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16.1 Statistics and Estimators: Definitions

Here we focus on the problem of estimating a deterministic parameter, θ (can be scalar or

vector-valued), given a collection of observations. Note that θ is assumed to be a determin-

istic parameter, so we will not assume a prior distribution on θ. In other words, we shall

follow a frequentist rather than a Bayesian approach here.

We assume that we measure the values of N random variables, X1, . . . , XN , that take values

in a set E (e.g., can be E ⊆ IR or E ⊆ IRn) which are typically independently identically

distributed according to a parametric distribution with pdf pθ. This collection of random

variables is referred to as our (random) sample.

The parameter θ is assumed to be drawn from a set Θ called the parameter set. The

collection {pθ; θ ∈ Θ} is known as the statistical model. A desirable property of the

statistical model is that different parameter values correspond to different distributions,

that is, pθ = pθ′ ⇒ θ = θ′. If this holds we say that the statistical model is identifiable.

As an example, consider the case of IR-valued random variables, X1, . . . , XN
iid∼ N (µ, σ2),

where θ = (µ, σ2) and Θ = IR× (0, σ2). It can be easily checked that this statistical model

is identifiable.

We define a statistic as a (measurable) function of our sample, that is, T = r(X1, . . . , XN).

Note that since X1, . . . , XN are random variables, T is a random variable as well. A well

known and widely used statistic is the sample mean

X̄N = 1
N

N∑
i=1

Xi. (16.1)

Another popular statistic is the sample variance defined as

s2 = 1
N

N∑
i=1

(Xi − X̄N)2. (16.2)

Other statistics can be T = max{X1, . . . , XN}, T = min{X1, . . . , XN}, T = X1 or even

T = 100 — there is an infinite choice of statistics given a sample.
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A statistic that is used to estimate a parameter θ is referred to as an estimator of θ; an

estimator is a statistic that is “close to” θ in some sense.

We define the bias of an estimator θ̂ = θ̂(X1, . . . , XN) to be the expectation of the estimation

error, θ̂ − θ, given θ, that is1

bias(θ̂) = IE[θ̂ − θ | θ], (16.3)

if the expectation exists. Note that the bias of θ̂ can depend on θ — our estimator can have

a different bias for different values of the (unknown) parameter θ. If bias(θ̂) = 0 for all θ we

say that the estimator is unbiased.

The variance of an estimator θ̂ is defined as

var(θ̂) = Var
[
θ̂ | θ

]
= IE

[
(θ̂ − IE[θ̂ | θ])2 | θ

]
, (16.4)

if the expectation exists. We also define the mean square error (MSE) of θ̂ as

mse(θ̂) = IE[(θ̂ − θ)2 | θ], (16.5)

if the above expectation exists.

Theorem 16.1 (MSE, Variance and Bias) The mean square error of an estimator

is given by

mse(θ̂) = var(θ̂) + bias(θ̂)2. (16.6)

Proof: The proof relies on the definition of the MSE in Equation (16.5) and the formula

Var[X | Y ] = IE[X2 | Y ]− IE[X | Y ]2. This proof is left to the reader as an exercise (KK).

Note that according to Equation (16.6), if an estimator θ̂ is unbiased, its MSE is equal to

its variance.
1Strictly speaking, in this context, this is not a conditional expectation since θ is not a random variable.

We write it like this to underline the that that the bias is a function of θ.
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In practice it is typically desirable for an estimator to exhibit minimum MSE; at the same

time, we want it to be unbiased. These requirements are sometimes impossible to reconcile.

In some cases, no unbiased estimators exist. Let us give a few examples to understand the

above concepts.

Example 1 (Sample mean is unbiased). Suppose that X1, . . . , XN are iid with mean

µ. The sample mean is given in Equation (16.1) and is an estimtor of µ. We can easily see

that the bias of X̄N is

bias(X̄N) = IE[X̄N − µ | µ] = IE

[
1
N

N∑
i=1

Xi

∣∣∣∣∣µ
]

= 1
N

N∑
i=1

IE[Xi | µ] = µ. (16.7)

This proves that X̄N is an unbiased estimator of µ. ♥

Example 2 (MSE of sample mean). Assume that the variance of Xi is known and equal

to σ2 for all i ∈ IN[1,N ]. According to Equation (16.4), the variance of the sample mean is

var(X̄N) = Var[X̄N | µ] = Var

[
1
N

N∑
i=1

Xi

]

= 1
N2 Var

[
N∑
i=1

Xi

]
indep.

= 1
N2

N∑
i=1

Var[Xi] =
σ2

N
. (16.8)

Since the estimator is unbiased, according to Theorem 16.1, its MSE is equal to its variance.

We see that as N →∞, the MSE of this estimator converges to zero (at a rate of O(1/N)). ♥

Example 3 (Sample variance is biased). The sample variance given in Equation (16.2)

is a biased estimator of σ2. Indeed,

IE[s2 | σ2] = IE

[
1
N

N∑
i=1

(Xi − X̄N)2

]

= IE

[
1
N

N∑
i=1

((Xi − µ)2 − (X̄N − µ)2)2

]

= 1
N

N∑
i=1

IE[(Xi − µ)2]

Var[Xi]

− 1
N

N∑
i=1

IE[(X̄N − µ)2]

Var[X̄N ]

= σ2 − σ2

N
, (16.9)
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therefore, the bias of s2 is

bias(s2) = IE[s2 | σ2]− σ2 = −σ
2

N
. (16.10)

We see that s2 is a biased estimator, but the bias converges to 0 as N →∞. We say that s2

is an asymptotically unbiased estimator of σ2. ♥

Example 4 (Unbiased estimator of the variance). Following the same procedure as

above we can show that the following estimate of σ2 is an unbiased estimator

s2
corr =

1

N − 1

N∑
i=1

(Xi − X̄N)2. (16.11)

This estimator is known as Bessel’s correction. ♥

Example 5 (Lack of unbiased estimator). There are cases where there are no unbiased

estimators. For example, suppose that X ∼ Exp(λ), λ > 0. Recall that the pdf of the

exponential distribution, Exp(λ), is

pX(x;λ) = λe−λx, x ≥ 0. (16.12)

Suppose that λ̂ = λ̂(X) is an unbiased estimator of λ. Then, by definition the following

needs to hold for all λ > 0

bias(λ̂) = 0⇔ IE[λ̂ | λ] = λ

⇔
∫ ∞

0

λ̂(x)pX(x)dx = λ

⇔
∫ ∞

0

λ̂(x)λe−λxdx = λ

⇔
∫ ∞

0

λ̂(x)e−λxdx = 1

⇔ {Lλ̂(x)}(λ) = 1, (16.13)

where the last equality is due to the fact that
∫∞

0
λ̂(x)λe−λxdx is the Laplace transform of

λ̂ evaluated at λ. However such a function, λ̂(x) cannot exist2. ♥
2The reason is that the property limλ→∞{Lλ̂(x)}(λ) = 0 should be satisfied.
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Lastly, we define a uniformly minimum-variance unbiased estimator (UMVUE) to be an

unbiased estimator such that there is no other unbiased estimator with a lower variance.

Formally, let X1, . . . , XN be a random sample and θ̂(X1, . . . , XN) is an unbiased estimator

of a parameter θ. Then, θ̂ is UMVUE if

var[θ̂] ≤ var[θ̃], (16.14)

for all θ and for all unbiased estimators θ̃.

Bias-Variance Tradeoff: UMVUEs are considered good estimators. But sometimes, we

may decide to choose an estimator that has some small nonzero bias, but comes with a lower

variance. This is known as the bias-variance tradeoff problem or dilemma.
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16.2 Fisher Information for one-parameter models

We shall introduce the concept of the Fisher information via an example. Let X ∼ N (µ, σ2)

where σ2 is known and µ is unknown. Let us consider two cases:

• Case I: X ∼ N (µ, 20) (large variance),

• Case II: X ∼ N (µ, 0.1) (small variance),

where the value of µ is the same in both cases. Suppose we obtain one measurement, X = x,

so the log-likelihood of µ is

`(µ;x) = log pX(x;µ) = − log(
√

2πσ)− (x− µ)2

2σ2
. (16.15)

Figure 16.1 shows the log-likelihood functions, `(µ;x), for a few samples X ∼ N (µ, 0.1)

(Case I). We can say that each observation is quite informative about the parameter µ.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−100

−50

0

50

µ

`(
µ

;x
i)

Case I

Figure 16.1: (Case I) Plot of `(µ;xi) for N = 20 measurements. The likelihood function has,

on average, a healthy curvature (it is not too flat).

It is is not difficult to guess the true value of µ from the above plot (in fact it is µ = 1).

On the other hand, in Case II we have the following plot (Figure 16.2) of the log-likelihood

function for each observation
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Figure 16.2: (Case II) Plot of `(µ;xi) for N = 20 measurements. The likelihood function is,

on average, quite flat.

Here it is more difficult to guess what the true value of µ is, or, to put it differently, the data

are less informative about µ, the main reason being that

Fisher proposed the following quantity to quantify the information that an observation X3

offers about the parameter θ:

I(θ) = − IE

[
∂2

∂θ2
`(θ;X)

∣∣∣∣ θ] , (16.16)

where the expectation is taken with respect to X and ` denotes the log-likelihood. In other

words, using the pdf of X,

I(θ) =

∫
E

∂2

∂θ2
`(θ;x)pX(x; θ)dx. (16.17)

This quantity is known as the Fisher information of the statistical model. The Fisher

information quantifies how much information the data gives us for the unknown parameter.

There is an alternative expression for the determination of I(θ) — we will prove it in a

moment — which uses the first derivative of `:

I(θ) = IE

[(
∂`(θ;X)

∂θ

)2
∣∣∣∣∣ θ
]
. (16.18)

3or several observations, X1, . . . , XN
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Again, as we did in Equation (16.17), we can use the pdf of X to compute I(θ), that is,

I(θ) =

∫
E

(
∂`(θ;x)

∂θ

)2

pX(x; θ)dx. (16.19)

The Fisher information is defined if the following basic regularity conditions are satisfied:

(i) pX(x; θ) is differentiable wrt θ almost everywhere, (ii) the support of pX(x; θ) does not

depend on θ. In other words, the set {x : pX(x; θ) > 0} does not depend on θ, and (iii) it

holds that ∂
∂θ

∫
pX(x; θ)dx =

∫
∂
∂θ
pX(x; θ)dx.

Note that the first assumption is not satisfied for the uniform distribution, U(0, θ), and the

Fisher information is not defined for U(0, θ).

Theorem 16.2 (Fisher Information Equivalent Formulas) Suppose `(θ;X) is the

likelihood of a parameter θ given some observation(s) X and the above regularity assump-

tions are satisfied. Then,

IE

[
∂`(θ;X)

∂θ

∣∣∣∣ θ] = 0. (16.20)

Additionally, assume that it is twice differentiable and (iv) assumption (iii) holds for the

second order derivative wrt θ. Then, the Fisher information is given by

I(θ) = − IE

[
∂2

∂θ2
`(θ;X)

∣∣∣∣ θ] = IE

[(
∂`(θ;X)

∂θ

)2
∣∣∣∣∣ θ
]

= Var

[
∂`(θ;X)

∂θ

∣∣∣∣ θ] . (16.21)

Proof: We have

IE

[
∂`(θ;X)

∂θ

∣∣∣∣ θ] = IE

[
∂ log p(X; θ)

∂θ

∣∣∣∣ θ] =

∫
E

∂pX(x;θ)
∂θ

���
��pX(x; θ)�

���
�pX(x; θ)dx

=

∫
E

∂pX(x; θ)

∂θ
dx

Ass. (iii)
=

∂

∂θ

∫
E

pX(x; θ)dx

=1

= 0, (16.22)

so the last equality in Equation (16.21) follows.
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To prove that the two expectations are equal we use the fact that

∂2

∂θ2
log pX(X; θ) =

∂2pX(X;θ)
∂θ2

pX(X; θ)
−

(
∂2pX(X;θ)

∂θ2

pX(X; θ)

)2

=
∂2pX(X;θ)

∂θ2

pX(X; θ)
−
(
∂

∂θ
log pX(X; θ)

)2

. (16.23)

Note that

IE

[
∂2pX(X;θ)

∂θ2

pX(X; θ)

]
=

∫
E

∂2pX(x;θ)
∂θ2

���
��pX(x; θ)�

��
��pX(x; θ)dx

(iv)
=

∂2pX(x; θ)

∂θ2

∫
E

pX(x; θ)dx

=1

= 0. (16.24)

Now taking the expectation on Equation (16.23) and using Equation (16.24), Equation

(16.21) follows.

Example 6 (Fisher information of Exponential). Suppose X
iid∼ Exp(λ) where λ > 0 is

an unknown value. We want to quantify how informative a measurement ofX. The likelihood

function is L(λ, x) = λe−λx, where x ≥ 0, so the log-likelihood is `(λ, x) = log λ − xλ.

Suppose that the true value of λ is 3. Let us samples some values x1, . . . , x10 using Python

(numpy.random.Generator.exponential) and plot `(λ, xi) which is shown in Figure 16.3.

1 2 3 4 5 6 7 8 9 10

−4

−2

0

2

λ

`(
λ

;x
i)

Figure 16.3: Log-likelihood, `(λ;xi), for different values sampled from Exp(3).

In this example we see that the log-likelihood is not quadratic in λ, so its curvature depends

on λ. In particular, the curvature is

∂2

∂λ2
`(λ;X) = − 1

λ2
, (16.25)
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therefore, the Fisher information is I(λ) = − 1
λ2

. ♥

Example 7 (Fisher information of Bernoulli). The likelihood function of a Bernoulli

trial is L(p;X) = pX(1− p)1−X , so the log-likelihood is

`(p;X) = X log p+ (1−X) log(1− p). (16.26)

The second derivative of ` with respect to p is

∂2`(p;X)

∂p2
=
X

p2
+

1−X
(1− p)2

. (16.27)

The Fisher information is

I(p) = IE

[
∂2`(p;X)

∂p2

∣∣∣∣ p] = IE

[
X

p2
+

1−X
(1− p)2

∣∣∣∣ p] = . . . =
1

p(1− p)
. (16.28)

The plot of the Fisher information, I(p), is shown in Figure 16.4.
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Figure 16.4: Fisher information for Ber(p) as a function of p. The outcomes of blatantly

unfair coins are more informative about the parameter p.

We see that the Fisher information incrases for values of p close to 0 or 1 (for blatantly unfair

coins). ♥

Exercise 1 (K). Determine the Fisher information in each of the following cases: (i)

Poisson(λ), (ii) Exp(λ), (iii) N (µ, σ2) with known σ2, (iv) N (0, σ2) with unknown σ2. Then

fill in the folloing table:
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Statistical model θ I(θ)

Ber(p) p 1
p(1−p)

Poisson(λ) λ

Exp(λ) λ

N (µ, σ2) µ

N (µ, σ2) σ2

U(0, θ) θ

For each of the above distributions, plot I(θ) and produce figures akin to Figure 16.1 or

Figure 16.3 for different values of θ.

Exercise 2 (K). Suppose that the Fisher information associated with a likelihood function

`(θ;X) is I(θ). Suppose we have a sample of N observations, X1, . . . , XN . Show that the

Fisher information for `(θ;X1, . . . , XN) is NI(θ).

Exercise 3 (Fisher information of transformation) (KK). Suppose the log-likelihood

function, `(θ;X), has Fisher information I(θ). Now suppose that the statistical model is

parametrised with a parameter λ such that θ = g(λ), for some continuously differentiable

function g. Let I1(λ) be the Fisher information of the new model. Show that

I1(λ) = g′(λ)2I(g(λ)). (16.29)

Exercise 4 (Application of Exercise 3) (K). Suppose X ∼ Exp(λ). We know that

the Fisher information is I(λ) = 1/λ2. We reparametrise this model using λ = ξ2, that is

X ∼ Exp(ξ2). What is the Fisher information of the parameter ξ for the new model?
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16.3 Cramér-Rao Bound for one-parameter models

The Cramér-Rao Bound is a lower bound on the variance of an unbiased estimator. The

result we are about to state relies on the following weak regularity assumptions on the

likelihood function, `(θ), and the estimator, θ̂.

Regularity assumptions. In addition to the basic regularity assumptions we stated on

page 16-9, suppose that for all x for which pX(x; θ) > 0, the derivative ∂/∂θ pX(x; θ) exists,

and the following holds

∂

∂θ

∫
E

θ̂(x)pX(x; θ)dx =

∫
E

θ̂(x)
∂

∂θ
pX , (x; θ)dx (16.30)

whenever the right hand side exists and is finite.

Theorem 16.3 (Cramér-Rao Bound) Let X be a sample from with pdf pX(x; θ) and

θ̂ is an unbiased estimator of θ. Suppose that the regularity assumptions hold. Then,

var[θ̂] ≥ 1

I(θ)
. (16.31)

It follows from Theorem 16.3 that if an unbiased estimator attains the lower bound, i.e., if

var[θ̂] = 1
I(θ)

, then it is a UMVUE. However, this lower bound is not tight in the sense that

not all UMVUEs attain this lower bound. Let us give an example where this happens.

Example 8 (UMVUE via Cramér-Rao bound). In Example 1 we showed that the

sample mean, X̄N , is an unbiased estimator of the mean µ and in Example 2 we showed that

its variance is var[X̄N ] = σ2/N (σ2 is assumed to be known). Now assume that X1, . . . , XN
iid∼

N (µ, σ2) for which the regularity assumptions hold and the Fisher information for µ is

I(µ) =
N

σ2
. (16.32)

We see that var[X̄N ] = 1/I(µ), therefore, X̄N is a UMVUE for µ. ♥
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Example 9 (Estimator of Bernoulli parameter is UMVUE). Let X1, . . . , XN
iid∼

Ber(p). The estimator

p̂(X1, . . . , XN) = 1
N

N∑
i=1

Xi,

is unbiased (why?) and its variance is (see Equation (16.4))

var[p̂] = Var

[
1
N

N∑
i=1

Xi

∣∣∣∣∣ p
]

indep.
= 1

N2

N∑
i=1

Var[Xi] =
p(1− p)

N
. (16.33)

Now if X ∼ Ber(p), according to Equation (16.28) the Fisher information of p is I(p) = 1
p(1−p)

and following Exercise 2, the Fisher information for the case of N independent observations

becomes

I(p) =
N

p(1− p)
. (16.34)

The reader can verify that the regularity assumptions hold of the Bernoulli distribution. We

see that var[p̂] = I(p)−1, therefore, p̂ is a UMVUE of p. ♥

An unbiased estimator that attains the Cramér-Rao lower bound is called an efficient esti-

mator. All efficient estimators are UMVUE, however not all UMVUEs are efficient.

We shall now state a very useful result that can be used to determine an efficient estimator

(if it exists). The proof is a bit technical, so we will skip it.

Theorem 16.4 (Factorisation for efficient estimators) An efficient estimator, θ̂,

exists if and only if

∂`(θ;x)

∂θ
= I(θ)[θ̂(x)− θ]. (16.35)

If follows from the theorem that var[θ̂] = I(θ)−1. Let us give an example where we “factorise”

∂`(θ;x)
∂θ

as in Equation (16.35) to determine an efficient estimator.
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Example 10 (Estimator of σ2 with known mean). Suppose X1, . . . , XN
iid∼ N (µ, σ2),

where µ is known and σ2 is an unknown parameter. The likelihood of σ2 given a measure-

ments X = x is

`(σ2) = log pX(x;µ, σ2) = − 1
2

log(2πσ2)− (x− µ)2

2σ2
. (16.36)

We leave it to the reader to verify that the Fischer information for one observation is 1/2σ4,

so for N observations the Fisher information is (see Exercise 2)

I(σ2) =
N

2σ4
. (16.37)

In Example 4 we showed that s2
corr = 1

N−1

∑N
i=1(Xi − X̄N)2 is an unbiased estimator of σ2.

It can be shown that the variance of this estimator is

var[s2
corr] =

2σ4

n− 1
>
σ4

n
, (16.38)

so s2
corr does not attain the lower bound of the Cramér-Rao inequality. Let us now try to

factorise ∂`(σ2;x)
∂σ2 as in Equation (16.35):

∂`(θ;x)

∂σ2
=

∂

∂σ2
log p(x1, x2, . . . , xN ;µ, σ2)

=
∂

∂σ2
log

N∏
i=1

p(xi;µ, σ
2) =

∂

∂σ2

N∑
i=1

log p(xi;µ, σ
2)

=
∂

∂σ2

N∑
i=1

log

[
1√
2πσ

exp

(
−(xi − µ)2

2σ2

)]

=
∂

∂σ2

N∑
i=1

[
−1

2
log(2πσ2)− (xi − µ)2

2σ2

]

=
∂

∂σ2

[
−N

2
log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

]

= − N

2σ2
+

N∑
i=1

(xi − µ)2

2σ4
. (16.39)

If we now take out as a common factor N/2σ4 — i.e., the Fisher information according to

Equation (16.37) — we have

∂`(θ;x)

∂σ2
=

N

2σ4

I(σ2)

∑N
i=1(xi − µ)2

N
efficient estimator

−σ2

 . (16.40)
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The regularity assumptions are satisfied in this case so from Theorem 16.4 we conclude that

the estimator

σ̂2 =

∑N
i=1(xi − µ)2

N
, (16.41)

is an efficient estimator of σ2 (thus UMVUE) and, by definition, its variance is 1/I(σ2) = σ4

N
.

There is no other unbiased estimator of σ2 with a lower variance. Note that this holds only

under the assumption that µ is known. ♥
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16.4 Sufficient statistics

If we are given a sample X1, . . . , XN
iid∼ N (µ, σ2), where σ2 is known, and we need to

determine µ we saw in Example 8 that we can use the statistic (estimator)

X̄N(X1, . . . , XN) =

∑N
i=1Xi

N
, (16.42)

which is a UMVUE. So, do we need to know the entire sample to estimate µ? We see that we

just need to know the sum of the observations. Would the knowledge of all observations be

of any use? Can we do anything better if we have all the observations instead of their sum?

(spoiler: no) Such statistics that summarise the data in such a way that the knownledge of

the data themselves is not needed are called sufficient.

A statistic is sufficient for a statistical model and a certain parameter if, roughly speaking,

the knownledge of the sample offers no additional information than the statistic itself. To

express this mathematically we say that a statistic T (X1, . . . , XN) is sufficient if the con-

ditional distribution of the sample, X1, . . . , XN , given T = t and θ does not depend on

θ.

However, this definition is difficult to use in practice. Instead, to show that a given statistic

is sufficient we can use the following theorem that we state without a proof.

Theorem 16.5 (Fisher-Neymann Factorisation Theorem) Suppose X1, . . . , XN

are iid samples. A statistic T (X1, . . . , XN) is sufficient if and only if the likelihood of θ

given the observations can be written as

L(θ;x1, . . . , xN) = u(x1, . . . , xN) · v(t, θ), (16.43)

where t = T (x1, . . . , xN) and where u and v are nonnegative functions.

Let us give a few examples of sufficient statistics for various statistical models.
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Example 11 (Normal data, unknown mean/known variance). Let X1, . . . , XN
iid∼

N (µ, σ2) with known variance, σ2, and unknown mean, µ. We will show that the statistic

T (X1, . . . , XN) =
∑N

i=1Xi is sufficient for this statistical model for µ. The likelihood of µ

given the observations is

L(µ;x1, . . . , xN) = c exp

(
−
∑N

i=1(xi − µ)2

2σ2

)
(16.44)

for a constant c, which does not depend on µ

= c exp

− 1

2σ2

N∑
i=1

x2
i +

µ

2σ2

N∑
i=1

xi

T

−Nµ
2

2σ2

 , (16.45)

so we can define

u(x1, . . . , xN) = c exp

(
− 1

2σ2

N∑
i=1

x2
i

)
, (16.46a)

v(T, µ) = exp

(
Nµ2

2σ2
+

µ

σ2
T

)
. (16.46b)

According to Theorem 16.5, T is a sufficient statistic. ♥

Example 12 (Bernoulli data). Let X1, . . . , XN
iid∼ Ber(θ), where p is unknown. The joint

pdf of the sample is

p(x1, . . . , xN ; θ) =
N∏
i=1

θxi(1− θ)1−xi = θ
∑N

i=1 xi

u(x1,...,xN )

(1− θ)N−
∑N

i=1Xi

v(
∑N

i=1Xi,θ)

, (16.47)

from which we see that T =
∑N

i=1 Xi is a sufficient statistic for θ. ♥

Exercise 5 (Gamma data, unknown α, known β) (K). Let X1, . . . , XN
iid∼ Γ(α, β),

where α is an unknown parameter and β is known. (i) Show that the statistic

T1(X1, . . . , XN) =
N∑
i=1

logXi,

is a sufficient statistic for α. (ii) Show that the statistic

T2(X1, . . . , XN) =
N∏
i=1

Xi,
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is also a sufficient statistic.

Exercise 6 (Sufficient statistic for U(0, θ)) (KKK). Let θ > 0 be an unknown parameter

and X1, . . . , XN
iid∼ U(0, θ) (uniform distribution on [0, θ]). Determine a sufficient statistic

for θ for this statistical model4.

Exercise 7 (Poisson data) (K). Suppose X1, . . . , XN
iid∼ Poisson(λ) with unknown pa-

rameter λ > 0. Show that T (X1, . . . , XN) =
∑N

i=1 Xi is a sufficient statistic.

Exercise 8 (Sufficient statistics) (KK). Fill in the following table with sufficient statis-

tics:

Statistical model θ Sufficient Statistic

U(0, θ) θ maxiXi

Ber(p) p
∑N

i=1 Xi

Γ(α, β) α
∑N

i=1 logXi

Γ(α, β) β

Statistical model θ Sufficient Statistic

Poisson(λ) λ

Exp(λ) λ

N (µ, σ2) µ

N (µ, σ2) σ2

Exercise 9 (Exponential families) (KK). A parametric distribution, pX(x; θ), is said

to belong to the exponential family if it can be written as

pX(x; θ) = h(x) exp [η(θ)t(x)− a(θ)] . (16.48)

(i) show tha the normal, exponential, Poisson, Bernoulli, and gamma (either with θ = α or

θ = β) distributions belong to the exponential family, (ii) T (X1, . . . , XN) =
∑N

i=1 t(Xi) is

a sufficient statistic, (iii) show that the normal distribution, N (µ, 1), and the exponential

distribution, Exp(λ), belong to the exponential family.

4Spoiler: show that T = maxiXi is a sufficient statistic.
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16.5 Better Estimators with Rao-Blackwellisation

16.5.1 Rao-Blackwell Theorem

Let X1, . . . , XN be a sample of independent random variables with pdf p(x; θ). Suppose we

have a rough estimator θ̂(X1, . . . , XN) of an unknown parameter θ and let T (X1, . . . , XN)

be a sufficient statistic for θ. We define the Rao-Balckwell estimator which is given by

θ̃rb = IE[θ̂ | T ]. (16.49)

The Rao-Blackwell estimator is very often better than θ̂ in terms of its MSE. Additionally, if

the original estimator, θ̂, is unbiased, its “Rao-Balckwellisation” in Equation (16.49) will also

be unbiased. In practice, the Rao-Blackwellisation of a crude estimator is often significantly

better in terms of MSE and under certain conditions, it yields a UMVUE (see Section 16.5.2).

Important remark: The Rao-Blackwell estimator is a function of T ! This results from T

being a sufficient statistic. In order to use θ̃rb we only need to know the value of the sufficient

statistic T — not the entire sample, X1, . . . , XN . In other words, we have an estimator

θ̃rb(T (X1, . . . , XN)). For example, if we have the observations X1 = x1, . . . , XN = xN , the

Rao-Blackwell estimate of θ is

θ̃rb(t) = IE[θ̂ | T = t], (16.50)

where t = T (x1, . . . , xN).

Theorem 16.6 (Rao-Blackwell Theorem) Let θ̂(X1, . . . , XN) be an estimator of a

parameter θ, let T be a complete statistic and θ̃rb be the estimator given in Equation

(16.49). Assume that the variance of θ̂ is finite for all θ ∈ Θ. Then,

mse(θ̃rb) ≤ mse(θ̂), (16.51)

for all θ ∈ Θ. Additionally, if θ̂ unbiased if and only if θ̃rb is unbiased.
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Proof: The MSE of θ̃rb is

mse(θ̃rb) = IE[(θ̃rb − θ)2] = IE[(IE[θ̂ | T ]− θ)2] = IE[IE[θ̂ − θ | T ]2]

≤ IE[IE[θ̂ − θ | T ]]2 = IE[θ̂ − θ]2 = mse(θ̂). (16.52)

Note that the expectation IE[(θ̃rb − θ)2] is with respect to t. The inequality follows from

Jensen’s inequality according to which IE[Z2] ≤ IE[Z]2.

The fact that θ̃rb is unbiased whenever the original estimator is unbiased is left to the reader

as an exercise.

We will now give a few examples, but first we need to do a quick brush up... Suppose

X ∼ Ber(θ). Then P[X = 1] = and

P[X = k] = , (16.53)

for k ∈ {0, 1}. Moreover, if X1, . . . , XN
iid∼ Ber(θ) then T =

∑N
i=1Xi ∼ and

P[T = t] = , (16.54)

for t ∈ .

If X is a discrete random variable, and Y is another random variable with P[Y = y] > 0,

then

IE[X | Y = y] = . (16.55)

On the other hand, if X and Y are continuous random variables with joint pdf pX,Y , then

IE[X | Y = y] = . (16.56)

Let us start with an example involving the Bernoulli distribution, which is a discrete distri-

bution.
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Example 13 (Rao-Blackwellisation, Bernoulli distribution). For this example we

need to recall that when X1, . . . , XN
iid∼ Ber(θ), then

∑N
i=1Xi ∼ Binom(N, θ)5.

Let X1, . . . , XN
iid∼ Ber(θ), where θ is unknown. The estimator θ̂ = X1 is unbiased (IE[θ̂] =

IE[X1 | θ] = θ) and has variance var[θ̂] = Var[X1 | θ] = θ(1− θ), but it is clearly a very crude

estimator. Indeed, it can only return 0 or 1.

In Example 12 we showed that T =
∑N

i=1Xi is a sufficient statistic. We can use it to

Rao-Blackwellise the above estimator. We have

θ̃rb(t) = IE[X1 | T = t] = IE

[
X1 |

N∑
i=1

Xi = t

]
(16.57)

and since X1 is a discrete random variance we can use the formula

=
P
[
Xi = 1,

∑N
i=1 Xi = t

]
P
[∑N

i=1 Xi = t
] (16.58)

=
P
[
Xi = 1,

∑N
i=2 Xi = t− 1

]
P
[∑N

i=1Xi = t
] (16.59)

since X1 and
∑N

i=2 are independent

=
���

���:
θ

P[Xi = 1] · P
[∑N

i=2Xi = t− 1
]

P
[∑N

i=1Xi = t
] (16.60)

and using the fact that
∑N

i=1Xi ∼ Binom(N, θ)

=
θ
(
N−1
t−1

)
θt−1(1− θ)N−t(

N
t

)
θt(1− θ)N−t

=
t

N
, (16.61)

therefore, the Rao-Blackwellised estimator is T/N , it is unbiased, and its variance is var[θ̃rb] =

1
N
θ(1 − θ). In fact, θ̃rb is the maximum likelihood estimator of θ and as we can see from

Example 7 it attains the Cramér-Rao lower bound, therefore it is a UMVUE. ♥

5Take a moment to revise the Bernoulli and binomial distributions in Handout 13.
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Example 14 (Rao-Blackwellisation, Uniform Distribution). Suppose X1, . . . , XN
iid∼

U(0, θ), where θ > 0 is an unknown parameter. Using the factorisation theorem (Theorem

16.5) we can show that T = maxi=1,...,N Xi is a sufficient statistic (Exercise 6).

Define the statistic S =
∑N

i=1 Xi. Then IE[S] = Nθ/2, so a naive approach can be to use

the following estimator of θ

θ̂ =
2

N

N∑
i=1

Xi, (16.62)

which is unbiased (but not UMVUE). Its Rao-Blackwellisation is

θ̃rb(t) = IE[θ̂ | T = t] = IE

[
2

N

N∑
i=1

Xi

∣∣∣∣∣max
i
Xi = t

]
(16.63)

and because of the independence of Xi this is

=
2

N

N∑
i=1

IE
[
Xi|max

i
Xi = t

]
= 2IE

[
X1|max

i
Xi = t

]
. (16.64)

We now do this trick

IE
[
X1|max

i
Xi = t

]
= IE

[
X1|max

i
Xi = t,X1 = max

i
Xi

]
t

P[X1 = max
i
Xi]

1
N

+ IE
[
X1|max

i
Xi = t,X1 < max

i
Xi

]
t
2

P[X1 < max
i
Xi]

1− 1
N

. (16.65)

As a result

θ̃rb(t) =
N + 1

N
t. (16.66)

It is easy to verify that the variance of θ̂ is θ2/3N, whereas we will state without a proof that

the variance of the Rao-Blackwell estimator is θ2

N(N+1)
.

Next we see the variance of the original estimator, θ̂, and its Rao-Blackwellisation, θ̃rb, with

respect to θ for N = 5 (left) and for different values of N with θ = 1 (right).
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We see that Rao-Blackwellisation lead to a significant improvement. ♥

Remark. Is the Rao-Blackwell estimator of Equation (16.66) a UMVUE? We could check

whether it is efficient. However, for the uniform distribution, U(0, θ), the Fisher informa-

tion is not defined, so we cannot use the Cramér-Rao bound.
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16.5.2 Can we do better?*

The Rao-Blackwell estimator is a (possibly/hopefully) better estimator than the original

one and if the original estimator is unbiased, so is its Rao-Blackwellisation. But can we do

better? Is it possible that the Rao-Blackwell estimator is a UMVUE? Gaili and Meilijson

showed that in some cases, the Rao-Blackwell estimator is not a UMVUE and one can find a

better estimator6. Under an additional condition known as completeness the Rao-Blackwell

estimator is a UMVUE — this is the celebrated Lehmann-Scheffé theorem that we will state

in this section.

Earlier we defined various statistics, T = T (X1, . . . , XN), which of course are random vari-

ables and often we known their distributions (which depend on θ). Before we proceed, let

us list some statistics and their distributions.

Sample dist. Statistic Statistic dist.

Xi
iid∼ Ber(θ) T =

∑N
i=1 Xi T ∼ Binom(N, θ)

Xi
iid∼ Poisson(λ) T =

∑N
i=1 Xi T ∼ Poisson(Nλ)

Xi
iid∼ Exp(λ) T =

∑N
i=1 Xi T ∼ Γ(N, λ)

Xi
iid∼ N (µ, σ2) T =

∑N
i=1 Xi T ∼ N (Nµ,Nσ2)

Xi
iid∼ N (0, σ2) T =

∑N
i=1 X

2
i T ∼ σ2χ2

N (Note∗)

Xi
iid∼ U(0, θ) T = maxi=1...,N Xi pT (t) = Nθ−N tN−1

T =
∑N

i=1Xi Irwin-Hall distribution∗∗

Xi
iid∼ Γ(α, β) T =

∑N
i=1 logXi Ref.∗∗∗

∗ Chi-squared distribu-

tion with N degrees of

freedom.

∗∗ It is a common mis-

take to assume that T ∼

U(0, Nθ)

∗∗∗ See S. A. Saberali

and N. C. Beaulieu, “Cal-

culating the distribution

of sums of log-gamma

random variables,” 2012

IEEE ICC, 2012, pp.

2416-2421.

A word of warning before we state the definition of completeness:

6Tal Galili and Isaac Meilijson (2016) An Example of an Improvable Rao–Blackwell Improvement, Ineffi-

cient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator, The American Statisti-

cian, 70:1, 108-113, DOI: 10.1080/00031305.2015.1100683.

https://doi.org/10.1080/00031305.2015.1100683
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“ Many definitions in statistics are intuitive, but unfortunately “complete

statistic” is not one of them.

From https://www.statisticshowto.com/complete-statistic/.

”
Indeed, completeness is a technical condition, which is understood through its use in the

Lehmann-Scheffé theorem, Basu’s theorem and other results.

Let us now give the definition of completeness. Let T (X1, . . . , XN) be a statistic with a pdf

pT (t; θ)7 and pT belongs to a family of parametric distributions Pθ = {pT ( · ; θ), θ ∈ Θ} . We

say that Pθ is a complete family if IE[g(T )] = 0 for all (measurable) functions g and for

all θ ∈ Θ implies that g(T ) = 0 almost surely8 for all θ. Equivalently, we can say that T is

a complete statistic9.

Example 15 (Complete statistic for Bernoulli). Suppose X1, . . . , XN
iid∼ Ber(θ), where

θ ∈ (0, 1) is an unknown parameter. Consider the statistic T =
∑N

i=1 Xi, which follows

the binomial distribution, Binom(N, θ) (see Handout 13). Suppose that IE[g(T )] = 0 for all

θ ∈ [0, 1], that is

N∑
t=0

g(t)

(
N

t

)
θt(1− θ)N−t = 0, ∀θ ∈ (0, 1)

⇔(1− θ)
N∑
t=0

g(t)

(
N

t

)
θt(1− θ)−t = 0, ∀θ ∈ (0, 1)

7For example, if we have X1, . . . , XN
iid∼ N (µ, 1) and we define T = 1

N

∑N
i=1Xi, then we know that

T ∼ N (µ, 1/N) so pT (t;µ) = (
√

2πσ2)−1/2 exp
(
−N(t−µ)2

2

)
. Note that the distribution of T depends para-

metrically on the parameter µ.
8Detail: here “almost surely” is meant with respect to Pθ, where Pθ is the probability measure that

corresponds to p( · ; θ), for all θ ∈ Θ.
9An alternative statement of the definition of completeness is: “T is complete if there are no nontrivial

unbiased estimators of 0 based on T .”

https://www.statisticshowto.com/complete-statistic/
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⇔
N∑
t=0

g(t)

(
N

t

)(
θ

1− θ

)t
= 0, ∀θ ∈ (0, 1) (16.67)

Define z = θ
1−θ > 0; then we have

N∑
t=0

g(t)

(
N

t

)
zt

polynomial in z

= 0, ∀z > 0, (16.68)

and the only way that a polynomial is zero for all z > 0 is that it is the zero polynomial,

i.e., g(t) = 0 for all t, which shows that T is complete. ♥

Example 16 (Complete statistic for Poisson). Suppose X1, . . . , XN
iid∼ Poisson(λ) and

define T =
∑N

i=1Xi. We know that T ∼ Poisson(Nλ)10. Recall that T takes values in IN, so

a function g of T is essentially a sequence, (gt)t∈IN. Now suppose g is such that IE[g(T )] = 0

for all λ; equivalently

∞∑
t=0

gt
(Nλ)te−Nλ

t!
= 0, ∀λ > 0⇔

∞∑
t=0

gt
(Nλ)t

t!

s(λ)

= 0, ∀λ > 0. (16.69)

By taking λ→ 0+ we observe that g0 = 0. Then, by differentiating s with respect to λ and

taking λ → 0+ we observe that g0 = 0. Recursively, gt = 0 for all t ∈ IN, which shows that

T is a complete statistic. ♥

Example 17 (Complete statistic for Normal). Suppose X1, . . . , XN
iid∼ N (µ, σ2), where

σ2 is known and µ is an unknown parameter. Define T =
∑N

i=1 Xi, and T ∼ N (Nµ,Nσ2).

Suppose g is a measurable function such that IE[g(T )] = 0 for all µ ∈ IR. From LotUS∫ ∞
−∞

g(t)pT (t;µ, σ2)dt = 0, ∀µ ∈ IR

⇔
∫ ∞
−∞

g(t) exp

(
−(t−Nµ)2

2Nσ2

)
dt = 0, ∀µ ∈ IR

10Exercise 10 (KK). Prove that if X ∼ Poisson(λ) and X ′ ∼ Poisson(λ′), for some λ, λ′ > 0, then

X + X ′ ∼ Poisson(λ + λ′). Hint: Use the fact that the pdf of X + X ′ is the convolution of the pdfs of X

and X ′.
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⇔
∫ ∞
−∞

g(t) exp

(
− t2

2Nσ2

)
���

���
��

exp

(
−N

2µ2

2Nσ2

)
exp

(
2Nµt

2Nσ2

)
dt = 0, ∀µ ∈ IR

⇔
∫ ∞
−∞

g(t) exp

(
− t2

2Nσ2

)
exp

( µ
σ2
t
)

dt = 0, ∀µ ∈ IR (16.70)

Recall that the two-sided or bilateral Laplace transform of a function f : IR → IR is

B{f(t)}(s) =
∫∞
−∞ f(t)e−stdt, for s ∈ C, if the integral converges. That said, Equa-

tion (16.70) can be written equivalently as

B

{
g(t) exp

(
− t2

2Nσ2

)}( µ
σ2

)
= 0,∀µ ∈ IR, (16.71)

that is,

B

{
g(t) exp

(
− t2

2Nσ2

)}
(s) = 0,∀s ∈ IR. (16.72)

In turn this means that g(t) exp
(
− t2

2Nσ2

)
= 0 for almost all t, so g = 0 almost surely, which

shows that T is complete. ♥

Let us have a look at the following simple implication of completeness, which motivates its

definition and brings us closer to the Lehmann-Scheffé Theorem.

Proposition 16.7 (Uniqueness) If θ̂1 and θ̂2 are two unbiased estimators that depend

on a complete and sufficient statistic, they are Pθ-almost surely equal to one another for

some θ ∈ Θ, i.e., Pθ[θ̂1 = θ̂2] = 1, for some θ ∈ Θ.

Proof: Suppose we have two sufficient, complete, unibased estimators, θ̂1 and θ̂2 that depend

on a complete sufficient statistic T = T (X1, . . . , XN). It is IE[θ̂1] = θ and IE[θ̂2] = θ. Suppose

that the two estimators are essentially different in the sense

Pθ[θ̂1(T ) = θ̂2(T )] 6= 0, ∀θ ∈ Θ. (16.73)

Now define g(T ) = θ̂1(T ) − θ̂2(T ) for which IE[g(T )] = 0, but Pθ[g(T ) = 0] 6= 0, meaning

that T is not complete.
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Theorem 16.8 (Lehmann-Sheffé) Let X1, . . . , XN be a (iid) sample with distribution

p(·; θ), where θ ∈ Θ is an unknown parameter. Let T = T (X1, . . . , XN) is a sufficient and

complete statistic for θ. Let θ̃(T ) be an unbiased estimator of θ — i.e., IE[θ̃(T ) | θ] = θ.

Then, θ̃(T ) is the unique UMVUE of θ.

Proof: Suppose θ̂ be an unbiased estimator of θ. The Rao-Blackwell theorem implies that

the estimator θ̃rb(T ) = IE[θ̂ | T ] with var(θ̃rb) ≤ var(θ̂). Moreover, since θ̃ and θ̃rb are

unbiased, then IE[θ̃(T ) − θ̃rb(T )] = 0. Since T is complete, θ̃(T ) = θ̃rb(T ) almost surely, so

they have the same variance, that is,

var[θ̃(T )] = var[θ̃rb(T )] ≤ var[θ̂], (16.74)

and this holds for any unbiased estimator, θ̂. This proves that θ̃ is a UMVUE. The uniqueness

follows from Proposition 16.7.

Remark. In many cases, it is easy to determine a complete and sufficient statistic. The

Lehmann-Scheffé suggests that if we can use a sufficient statistic to define an unbiased

estimator, it will be a UMVUE.

Example 18. In Exercise 7 and Example 16 we showed that T =
∑N

i=1Xi is a sufficient and

complete statistic for X1, . . . , XN
iid∼ Poisson(λ). The estimator λ̂ = 1

N
T is unbiased (why?),

therefore, by the Lehmann-Scheffé theorem, it is the unique UMVUE. ♥
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