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15.1 Randomness and Nonlinearities

Given the pdf (or pmf) of a random variable X, we can determine its expectation and
variance. However, the expectation and variance of functions of X, i.e., random variables
Y = f(X), are typically difficult to determine. Here we will present two approximation

methods: linearisation and Monte Carlo simulations.

15.1.1 Linearisation

Consider a function f : R" — IR™, which can be written as follows

fi(z)

f(z) = fQSx) : (15.1)

()

where f; : IR" — IR are smooth functions. The Jacobian matrix of f is a function

Jf:R" — IR™" given by
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Suppose that f : IR" — IR™ is a differentiable function. Let X be a IR"-valued random
variable. Define Y = f(X) and take X := IE[X], ¥x := Var[X]. Then,

Y = f(X) = f(X) + JF(X)(X - X), (15.3)
so the expectation and variance of Y can be approximated by

E[Y] ~ Vi, := f(X) (15.4a)
Var[Y] = Sy, = Jf(X)Zx JF(X)". (15.4b)
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¢ 1

Roughly speaking, this approximation is good when f is “not too nonlinear” " and X x is not

too large.
15.1.2 Monte Carlo approximation

Let f : R" — IR™ and X be a IR"-valued random variable. Define ¥ = f(X). The

expectation and variance of Y can be approximated by

Vie = + Z f(a), (15.5a)
rme = % D_ (@) = Vine) (/@) = Vine), (15.5b)

respectively, where (z')Y | are independent samples from the distribution of X. Although

for any finite NV, the above estimators of the expectation and the variance may be biased,

they (almost surely) converge to the true values as N — oo”.

15.1.3 Comparison

Consider the function f(z) = e and X ~ N (i, 0?). Then, the linearisation-based estimation

of the expected value and variance of Y = f(X) are

Yim =€, (15.6a)

EY,lin = €2u0'2. (156b)
It is known that?®

E[Y] = e*7°/2, (15.7a)

2

Var[Y] = (e7° — 1)e2+7°, (15.7Db)

lin the sense that the higher-order terms of Taylor’s theorem that we omitted can be ignored.
2provided f is measurable and has a finite variance; this is a consequence of Kolmogorov’s strong law of

large numbers.
SExercise 1 (##). Use LotUS to derive these results.
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Note: If X ~ N (u,0?), then Y = eX follows the log-normal distribution with parameters p

and o, which has a known pdf, mean and variance.

Let X ~ N(0.5,0.01); then the expectation and variance of Y = eX are

Correct Monte Carlo Linearisation
N =102 ‘ N =10* ‘ N = 10
Expectation | 1.6570 | 1.6613 1.6564 1.6569 1.6487
Variance 0.0276 | 0.0330 0.0280 0.0276 0.0272
and for X ~ N(0.5,0.15)
Correct Monte Carlo Linearisation
N =102 ‘ N = 10* ‘ N = 10
Expectation | 2.1170 | 2.9074 2.0926 2.1179 1.6487
Variance 2.2237 | 3.0378 2.7821 2.9119 1.3591

Note that Monte Carlo is an unbiased estimator of IE[Y], i.e., IE [Yy,] = IE[Y], but it may

require an extremely high number of samples to produce a good estimate. On the other

hand, linearisation works well when the variance is small. The linearisation method leads to

the extended Kalman Filter, while Monte Carlo principles are used in the Particle Filter.
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15.2 Extended Kalman Filter

15.2.1 Extended Kalman Filter
Consider the following nonlinear system

Tir1 = f(xt,wt), (158&)
Y = h(we, vr), (15.8b)

where xg, (w;); and (v;); are independent, (w;); and (v;); have zero mean and covariance
matrices (Q; and R; respectively. Even if w and v are Gaussian, z; and y; may not be (and

typically are not).
The objective is to determine Z;44;, 4, and the corresponding covariance matrices.

EKF uses the linearisation technique. It can work well, especially when variance is low or
the system is approximately linear. It is a very popular in practice (especially in navigation).

It is not an optimal estimator; may even diverge.

How it works: use the linearisation method to produce approximate measurement and time

update steps.

For the measurement update step, we start with the standard initialisation: Zg_; = Zp and

Yo—1 = Fy and we linearise the output function at x = Zy;_1:

C= J;Uh(fi'ﬂt_l, 0), (159&)
R = J,h(Zy1,0) R J,h(Zys1,0)7 (15.9b)

The measurement update is

Zi't|t = j’;t\tfl + Eﬂt,lCT(CEﬂt,lCT + é)_l(yt — h(l't\tfla O)) (1510&)

Et|t = Et|t—1 - Zt‘t_lcT(OZt‘t_lcT + §>_102t|t—1 (1510b)
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Then, for the time update step, we linearise the dynamics at z = &y

A= fo(i'ﬂt,()), (1511&)

Q = Jof (&6 0) Q o f (e, 0)7 (15.11b)

The time update is

Trrape = f(Zye,0), (15.12a)
Sepe = ADgp AT + Q. (15.12b)

15.3 EKF Application

Let 7, us,a; € IR? be the (planar) position, velocity and acceleration of a vehicle with

dynamics
Tyl =T + 0.2ut, (1513&)
U1 = Uy + 0.26Lt, (1513b)
a1 = (I)(Zt + Wy, (1513C)

where w; ~ N(0g,0.215), and

0.50 0.87

o = . (15.14)
—0.87 0.48

Three beacons are positioned at r™) = (3,2), r®? = (2, -3) and r® = (=5, 3); a sensor can

measure the distances to these points — in particular y;; = [|r — r@D||y + vy, @ € Npg),

where v;; ~ N(0,4).
We have a system with state vector &, = (ry, us, a;) and output y,. The dynamics is linear

I, 0.21,

O4x2
L1 = IQ 02[2 Tt + Wy,

I
P
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but the output equation is nonlinear

Yy = h(fﬂt, Ut)>

The gradient of ||z|| is V||z| = z/||z||, for  # 0. Let us denote this function by 7. Then,

m(ry — r)r
Jmh('ru U) = 7T(7"t — T(Q))T 03><4 )

m(ry — r®)r

and J,h(z,v) = I3. Some simulation results are shown below. You can play with the Python

code on Google Colab. Some simulation results are shown below.

—— Actual, x
/ 9 t
10 - Estimated, @,
x Beacon
8 o
=
6 /
s 4- \
NN
2 N X//'
——t s o
0 |
_2 _|
X X
[ [ [ [ [ [ [ [
—4 -2 0 2 4 6 8 10


https://colab.research.google.com/drive/1pO3XtCGuAGrhRG6FsHoIhilQzQROMOaZ?usp=sharing

Error, ||ry — Pyl

(xt, yt)

Position, r;

Velocity
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Acceleration
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15.4 Moving Horizon Estimation

Consider the nonlinear dynamical system

Ti41 = f(xt,wt), (1515&)

yy = h(xy) + vy, (15.15Db)

where xg, w; and v; are temporally and mutually uncorrelated, w; and v, follow known

distributions (not necessarily normal)*

Pu, (W) o< exp[—Ly(w)], (15.16a)

o, (v) o exp[—Ly(v)], (15.16D)

P (20) < exp[—Ly, (20)]. (15.16¢)

The disturbance terms can be constrained — in particular we assume that w; € W and

vy € V' (nonempty, closed), Constrained states: x; € X. The extended Kalman filter cannot

take into account constraints.

In order to describe the constraints we assume that ¢, (w) = oo, for w ¢ W, ¢,(v) = for

v ¢V, and (., (xg) = oo, for g ¢ X, therefore dom/?,, = W, dom/{, =V, dom/{,, = X

Our objective is to estimate xo.r = (2o, ..., 27) and wo.r_1 = (wo, . .., wr_1) from measure-

ments yo.r—1 = (Yo, - - -, yr—1) using a MAP approach. The posterior distribution is

p(xor, Wo.r—1 | Yor—1) X p(Yo.r—1 | To.rs Wor—1)p(To.1, Worr—1)- (15.17)
We can show that

0, if not x4 = f(zg, wy) or x4 ¢ X
p(To.r, wor—1) = N (15.18)
Pao(@0) [ T,—g Pw,(we), otherwise

This can be written as
N—-1

p(xo;%wo:T 1 pzo Zo prt Wy ]1{0} A f(It,wt))ILX(ItH)a (15~19)
t=0

4Since w € W, it is py,(w) = 0 for w ¢ W.
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where 14(s) =1if s € A and 14(s) = 0 otherwise. Furthermore,

T-1 T-1
p(Yor—1 | or, wor—1) = Hp(yt | 24) = Hpvt(yt — h(z))- (15.20)
t= t=0

With the convention —In0 = oo, we have —In14(s) = d4(s), define the function

L(»’UO;T,U)O:TA \ yo:Tq) = - hlp(%o:T, Wo.T-1 | yO:Tfl)
T—1

= lug(20) + Y bur (we) + Lo (90 = hl1))
t=0
+ 0qoy (@1 — f(2e, wp)) + Ox (@441)- (15.21)
The MAP estimate of xg.r and wg.r_1 given yo.r_1 can be determined by solving
minimise L(zo.r, wo.r—1 | Yo.r-1), (15.22)
0.7, W0 T—1

which is equivalently written as

T-1
minimise (g, (7o) + Y _ Cu, (wr) + Lo, (Y — h(z,)), (15.23a)
Zo:T,Wo:T—1 =0

subject to: @¢y1 = f(ze,wy), t € Ny, (15.23b)
Ty € X, t e N[QT}- (1523C)

T-1
PP (yosr—1) : minimise Ly, (20) + > Cu, (wr) + Lo, (yr — (1)),
0:T,W0:T—1 —0

subject to: w1 = f(a, we), t € Nig o1y,

Ty € X, t e N[O,T]-

At time T, having observed yo.7_1 we can solve the above problem to estimate zg.r and

Wo.Tr-1-



15-12

This problem can be solved explicitly if f is linear and w;, v; and xy are independent and
normally distributed. However, as time goes on and we accumulate more measurements, the
size of the optimisation problem grows unbounded. We will use (forward) DP to cast this

problem as a fixed-horizon optimal control problem (a problem with horizon N that does
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not grow).

15.4.1

Forward DP

Let us apply the forward dynamic programming procedure as we did in Handout 14.

Vi

and we can keep applying this procedure forwards.

= min Uiy (z0) +

= min { min {,,(x) + lo(zo, wo) | 1 = f(xo,wo)}
Z1.7,W1:T—1 Z0,Wo

N

-1

Co, (Wy) + Ly, (ye — h(zy)) Ty = f(xe, wy),

I /ﬁf(:[,’f,'lt,‘f) I t E ]N[Oval]

Zo:T,W0:T—1

1]

~

i, Top1 =[xy, wy),

Q.7 ,W0:T—1 " t € ]N[O,T—l}

= min Coo (o) + Y Lol wy)

I
=)

T-1
X = T, Wy ),
i th(xt,wt) t+1 f( t t) }
t=1

t e IN[LT—I]

= Tep1 = [z, wy),

= min + Zét(:pt, wy) ,

Z1.7,W1:T—1

t=1 t€ Nyr g

procedure can be written concisely as

*
Vi

‘/()*(I(]) - E;Bo (xO)a

(xt+1) = glh}l}) {V;*(l’t) + gt(xtywt) | Ty = f(xt,’wt)} ) (15.25b)

The forward dynamic programming

(15.25a)
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and Vi = min,,. V7 (xr).” This allows us to write the MAP estimation problem as

T-1
minimise  V}_ y(xr_n) + Z C(g,wy), (15.26a)
TT—N:T,WT—N:T—1 TN
subject to: xpyq = f(l’t, wt), t e H\I[T—N,T—lh (1526b)
Ty € )(7 te H\I[T—N,T]- (1526C)

This problem uses a window of measurements of fixed length N. However, the arrival cost

Vi_y is very difficult to compute.

.. instead, we shall use a different prior weighting function I'z_y(z) and solve

T-1
minimise  I'r_y(x7r_n) + Z Ce(xe, wy), (15.27a)
TT—N:T»WT—N:T—1 =T—N
subject to: w1 = f(x, wy), t € Nip_n o1y, (15.27Db)
Ty € X, te H\I[T—N,T}' (1527C)

One possible choice for the prior weighting is I'r_y(z) = 0. If N is sufficiently large and
some additional assumptions are satisfied, this works: the estimation error goes to zero if

the disturbances go to zero.

15.5 EKF vs MHE

Example taken from: E.L. Haseltine & J.B. Rawlings, A Critical Evaluation of Fxtended
Kalman Filtering and Moving Horizon Estimation, Ind. Eng. Chem.Res. 2005, 44(8):2451-60.

Consider the following chemical reaction take takes place in gaseous phase
2A — B,

with rate coefficient & = 0.16 and reaction rate r = kP3%, where P4 and Pgy are the partial

pressures of A and B respectively. The state is the vector x = [P4 Pp|™ and the system

®Note that V;* corresponds to —Inp(z; | yo.t—1)-
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dynamics is

Tt,1

_ 2I€Atxt71+1
Lep1 = ka2, | TW

Lt,2 + 2kAtxs 1+1
L ]
F(z)

where At = 0.1 is the sampling time. We can measure the total pressure, that is

Yy = [1 1} Ty + Uy,

where v; ~ N(0,0.1%) (R = 0.1?) and w; ~ N(0,0.001%I) (Q = 0.001%I;). Suppose that
xo = [3 1]" while our prior knowledge about zg is Zo = [0.1 4.5]" and Py = 6*[,.

% 4 _PA,t___ ﬁA,t‘t
E PB,t PB,t‘t
g \\
A 2 A
=
5
A 0 JeTTTTTTTTTTTTTTommTmmsommmommssmmeees |
| | | |
0 2 4 6 8 10

Time
We see that the estimates are of rather poor quality and ﬁBﬂt gives negative pressure values,
which do not make sense.

Next, we formulate the following FIE-MHE problem that is solved at time 7" — 1 using all

measurements 4o.r—1

T-1
Pr(yor—1) : a:o.Tnilvior.lTiHllivSfT 1 %on — .7?0]\?3&1 + % Hthfol + [Jvel|R=1, (15.28a)
H b M — 1 H — t:
subject to: @41 = F(a) + wy, t € Ny -1, (15.28b)
Y = []_ 1]1',5 -+ Uy, te ]N[O,Tfl]a (1528C)

Ty Z 07 t e ]N[O,T]- (1528d)
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Partial Pressures
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