
ELE8088: Control & Estimation Theory QUB, 2021

Handout 15: Beyond the Kalman Filter

Lecturer: Pantelis Sopasakis Date:

Topics: Nonlinearities ◦ Extended Kalman Filter (EKF) ◦ Moving Horizon Estimation

(MHE).

Last update: January 31, 2022 at 02:01:46.



15-2 Handout 15: Beyond the Kalman Filter

15.1 Randomness and Nonlinearities

Given the pdf (or pmf) of a random variable X, we can determine its expectation and

variance. However, the expectation and variance of functions of X, i.e., random variables

Y = f(X), are typically difficult to determine. Here we will present two approximation

methods: linearisation and Monte Carlo simulations.

15.1.1 Linearisation

Consider a function f : IRn → IRm, which can be written as follows

f(x) =


f1(x)

f2(x)
...

fm(x)

 , (15.1)

where fi : IRn → IR are smooth functions. The Jacobian matrix of f is a function

Jf : IRn → IRm×n given by

Jf(x) =


∇f1(x)ᵀ

∇f2(x)ᵀ

...

∇fm(x)ᵀ

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 (15.2)

Suppose that f : IRn → IRm is a differentiable function. Let X be a IRn-valued random

variable. Define Y = f(X) and take X := IE[X], ΣX := Var[X]. Then,

Y = f(X) ≈ f(X) + Jf(X)(X −X), (15.3)

so the expectation and variance of Y can be approximated by

IE[Y ] ≈ Y lin := f(X) (15.4a)

Var[Y ] ≈ ΣY,lin := Jf(X)ΣXJf(X)ᵀ. (15.4b)
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Roughly speaking, this approximation is good when f is “not too nonlinear”1 and ΣX is not

too large.

15.1.2 Monte Carlo approximation

Let f : IRn → IRm and X be a IRn-valued random variable. Define Y = f(X). The

expectation and variance of Y can be approximated by

Y mc = 1
N

N∑
i=1

f(xi), (15.5a)

ΣY,mc = 1
N

N∑
i=1

(f(xi)− Y mc)(f(xi)− Y mc)
ᵀ, (15.5b)

respectively, where (xi)Ni=1 are independent samples from the distribution of X. Although

for any finite N , the above estimators of the expectation and the variance may be biased,

they (almost surely) converge to the true values as N →∞2.

15.1.3 Comparison

Consider the function f(x) = ex and X ∼ N (µ, σ2). Then, the linearisation-based estimation

of the expected value and variance of Y = f(X) are

Y lin = eµ, (15.6a)

ΣY,lin = e2µσ2. (15.6b)

It is known that3

IE[Y ] = eµ+σ2/2, (15.7a)

Var[Y ] = (eσ
2 − 1)e2µ+σ2

. (15.7b)

1in the sense that the higher-order terms of Taylor’s theorem that we omitted can be ignored.
2provided f is measurable and has a finite variance; this is a consequence of Kolmogorov’s strong law of

large numbers.
3Exercise 1 (KK). Use LotUS to derive these results.
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Note: If X ∼ N (µ, σ2), then Y = eX follows the log-normal distribution with parameters µ

and σ, which has a known pdf, mean and variance.

Let X ∼ N (0.5, 0.01); then the expectation and variance of Y = eX are

Correct Monte Carlo Linearisation

N = 102 N = 104 N = 106

Expectation 1.6570 1.6613 1.6564 1.6569 1.6487

Variance 0.0276 0.0330 0.0280 0.0276 0.0272

and for X ∼ N (0.5, 0.15)

Correct Monte Carlo Linearisation

N = 102 N = 104 N = 106

Expectation 2.1170 2.9074 2.0926 2.1179 1.6487

Variance 2.2237 3.0378 2.7821 2.9119 1.3591

Note that Monte Carlo is an unbiased estimator of IE[Y ], i.e., IE
[
Y mc

]
= IE[Y ], but it may

require an extremely high number of samples to produce a good estimate. On the other

hand, linearisation works well when the variance is small. The linearisation method leads to

the extended Kalman Filter, while Monte Carlo principles are used in the Particle Filter.
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15.2 Extended Kalman Filter

15.2.1 Extended Kalman Filter

Consider the following nonlinear system

xt+1 = f(xt, wt), (15.8a)

yt = h(xt, vt), (15.8b)

where x0, (wt)t and (vt)t are independent, (wt)t and (vt)t have zero mean and covariance

matrices Qt and Rt respectively. Even if w and v are Gaussian, xt and yt may not be (and

typically are not).

The objective is to determine x̂t+1|t, x̂t|t and the corresponding covariance matrices.

EKF uses the linearisation technique. It can work well, especially when variance is low or

the system is approximately linear. It is a very popular in practice (especially in navigation).

It is not an optimal estimator; may even diverge.

How it works: use the linearisation method to produce approximate measurement and time

update steps.

For the measurement update step, we start with the standard initialisation: x̂0|−1 = x̃0 and

Σ0|−1 = P0 and we linearise the output function at x = x̂t|t−1:

C = Jxh(x̂t|t−1, 0), (15.9a)

R̃ = Jvh(x̂t|t−1, 0)RJvh(x̂t|t−1, 0)ᵀ (15.9b)

The measurement update is

x̂t|t = x̂t|t−1 + Σt|t−1C
ᵀ(CΣt|t−1C

ᵀ + R̃)−1(yt − h(xt|t−1, 0)) (15.10a)

Σt|t = Σt|t−1 − Σt|t−1C
ᵀ(CΣt|t−1C

ᵀ + R̃)−1CΣt|t−1 (15.10b)
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Then, for the time update step, we linearise the dynamics at x = x̂t|t

A = Jxf(x̂t|t, 0), (15.11a)

Q̃ = Jwf(x̂t|t, 0)QJwf(x̂t|t, 0)ᵀ (15.11b)

The time update is

x̂t+1|t = f(x̂t|t, 0), (15.12a)

Σt+1|t = AΣt|tA
ᵀ + Q̃. (15.12b)

15.3 EKF Application

Let rt, ut, at ∈ IR2 be the (planar) position, velocity and acceleration of a vehicle with

dynamics

rt+1 = rt + 0.2ut, (15.13a)

ut+1 = ut + 0.2at, (15.13b)

at+1 = Φat + wt, (15.13c)

where wt ∼ N (02, 0.2I2), and

Φ =

 0.50 0.87

−0.87 0.48

 . (15.14)

Three beacons are positioned at r(1) = (3, 2), r(2) = (2,−3) and r(3) = (−5, 3); a sensor can

measure the distances to these points — in particular yi,t = ‖r − r(i)‖2 + vi,t, i ∈ IN[1,3],

where vi,t ∼ N (0, 4).

We have a system with state vector xt = (rt, ut, at) and output yt. The dynamics is linear

xt+1 =


I2 0.2I2

I2 0.2I2

Φ

xt +

04×2

I2

wt,
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but the output equation is nonlinear

yt = h(xt, vt),

The gradient of ‖x‖ is ∇‖x‖ = x/‖x‖, for x 6= 0. Let us denote this function by π. Then,

Jxh(x, v) =


π(rt − r(1))ᵀ

π(rt − r(2))ᵀ

π(rt − r(3))ᵀ

03×4

 ,

and Jvh(x, v) = I3. Some simulation results are shown below. You can play with the Python

code on Google Colab. Some simulation results are shown below.
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Estimated, xt|t
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https://colab.research.google.com/drive/1pO3XtCGuAGrhRG6FsHoIhilQzQROMOaZ?usp=sharing
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15.4 Moving Horizon Estimation

Consider the nonlinear dynamical system

xt+1 = f(xt, wt), (15.15a)

yt = h(xt) + vt, (15.15b)

where x0, wt and vt are temporally and mutually uncorrelated, wt and vt follow known

distributions (not necessarily normal)4

pwt(w) ∝ exp[−`w(w)], (15.16a)

pvt(v) ∝ exp[−`v(v)], (15.16b)

px0(x0) ∝ exp[−`x0(x0)]. (15.16c)

The disturbance terms can be constrained — in particular we assume that wt ∈ W and

vt ∈ V (nonempty, closed), Constrained states: xt ∈ X. The extended Kalman filter cannot

take into account constraints.

In order to describe the constraints we assume that `w(w) = ∞, for w /∈ W , `v(v) = for

v /∈ V , and `x0(x0) =∞, for x0 /∈ X, therefore dom `w = W , dom `v = V , dom `x0 = X.

Our objective is to estimate x0:T = (x0, . . . , xT ) and w0:T−1 = (w0, . . . , wT−1) from measure-

ments y0:T−1 = (y0, . . . , yT−1) using a MAP approach. The posterior distribution is

p(x0:T , w0:T−1 | y0:T−1) ∝ p(y0:T−1 | x0:T , w0:T−1)p(x0:T , w0:T−1). (15.17)

We can show that

p(x0:T , w0:T−1) =

0, if not xt+1 = f(xt, wt) or xt+1 /∈ X

px0(x0)
∏N−1

t=0 pwt(wt), otherwise

(15.18)

This can be written as

p(x0:T , w0:T−1) = px0(x0)
N−1∏
t=0

pwt(wt)1{0}(xt+1 − f(xt, wt))1X(xt+1), (15.19)

4Since w ∈W , it is pw(w) = 0 for w /∈W .
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where 1A(s) = 1 if s ∈ A and 1A(s) = 0 otherwise. Furthermore,

p(y0:T−1 | x0:T , w0:T−1) =
T−1∏
t=0

p(yt | xt) =
T−1∏
t=0

pvt(yt − h(xt)). (15.20)

With the convention − ln 0 =∞, we have − ln1A(s) = δA(s), define the function

L(x0:T , w0:T−1 | y0:T−1) = − ln p(x0:T , w0:T−1 | y0:T−1)

= `x0(x0) +
T−1∑
t=0

`wt(wt) + `vt(yt − h(xt))

+ δ{0}(xt+1 − f(xt, wt)) + δX(xt+1). (15.21)

The MAP estimate of x0:T and w0:T−1 given y0:T−1 can be determined by solving

minimise
x0:T ,w0:T−1

L(x0:T , w0:T−1 | y0:T−1), (15.22)

which is equivalently written as

minimise
x0:T ,w0:T−1

`x0(x0) +
T−1∑
t=0

`wt(wt) + `vt(yt − h(xt)), (15.23a)

subject to: xt+1 = f(xt, wt), t ∈ IN[0,T−1], (15.23b)

xt ∈ X, t ∈ IN[0,T ]. (15.23c)

Pmap
T (y0:T−1) : minimise

x0:T ,w0:T−1

`x0(x0) +
T−1∑
t=0

`wt(wt) + `vt(yt − h(xt)),

subject to: xt+1 = f(xt, wt), t ∈ IN[0,T−1],

xt ∈ X, t ∈ IN[0,T ].

At time T , having observed y0:T−1 we can solve the above problem to estimate x0:T and

w0:T−1.
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This problem can be solved explicitly if f is linear and wt, vt and x0 are independent and

normally distributed. However, as time goes on and we accumulate more measurements, the

size of the optimisation problem grows unbounded. We will use (forward) DP to cast this

problem as a fixed-horizon optimal control problem (a problem with horizon N that does

not grow).

15.4.1 Forward DP

Let us apply the forward dynamic programming procedure as we did in Handout 14.

V̂ ?
T = min

x0:T ,w0:T−1

`x0(x0) +
T−1∑
t=0

`wt(wt) + `vt(yt − h(xt))

`t(xt,wt)

∣∣∣∣∣∣ xt+1 = f(xt, wt),

t ∈ IN[0,T−1]


= min

x0:T ,w0:T−1

`x0(x0) +
T−1∑
t=0

`t(xt, wt)

∣∣∣∣∣∣ xt+1 = f(xt, wt),

t ∈ IN[0,T−1]


= min

x1:T ,w1:T−1

{
min
x0,w0

{`x0(x0) + `0(x0, w0) | x1 = f(x0, w0)}

V ?
1 (x1)

+
T−1∑
t=1

`t(xt, wt)

∣∣∣∣∣∣ xt+1 = f(xt, wt),

t ∈ IN[1,T−1]

}

= min
x1:T ,w1:T−1

V ?
1 (x1) +

T−1∑
t=1

`t(xt, wt)

∣∣∣∣∣∣ xt+1 = f(xt, wt),

t ∈ IN[1,T−1]

 , (15.24)

and we can keep applying this procedure forwards. The forward dynamic programming

procedure can be written concisely as

V ?
0 (x0) = `x0(x0), (15.25a)

V ?
t+1(xt+1) = min

x0,w0

{V ?
t (xt) + `t(xt, wt) | xt+1 = f(xt, wt)} , (15.25b)
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and V̂ ?
T = minxT V

?
T (xT ).5 This allows us to write the MAP estimation problem as

minimise
xT−N :T ,wT−N :T−1

V ?
T−N(xT−N) +

T−1∑
t=T−N

`t(xt, wt), (15.26a)

subject to: xt+1 = f(xt, wt), t ∈ IN[T−N,T−1], (15.26b)

xt ∈ X, t ∈ IN[T−N,T ]. (15.26c)

This problem uses a window of measurements of fixed length N . However, the arrival cost

V ?
T−N is very difficult to compute.

... instead, we shall use a different prior weighting function ΓT−N(x) and solve

minimise
xT−N :T ,wT−N :T−1

ΓT−N(xT−N) +
T−1∑

t=T−N

`t(xt, wt), (15.27a)

subject to: xt+1 = f(xt, wt), t ∈ IN[T−N,T−1], (15.27b)

xt ∈ X, t ∈ IN[T−N,T ]. (15.27c)

One possible choice for the prior weighting is ΓT−N(x) = 0. If N is sufficiently large and

some additional assumptions are satisfied, this works: the estimation error goes to zero if

the disturbances go to zero.

15.5 EKF vs MHE

Example taken from: E.L. Haseltine & J.B. Rawlings, A Critical Evaluation of Extended

Kalman Filtering and Moving Horizon Estimation, Ind.Eng.Chem.Res. 2005, 44(8):2451-60.

Consider the following chemical reaction take takes place in gaseous phase

2A −→ B,

with rate coefficient k = 0.16 and reaction rate r = kP 2
A, where PA and PB are the partial

pressures of A and B respectively. The state is the vector x = [PA PB]ᵀ and the system

5Note that V ?
t corresponds to − ln p(xt | y0:t−1).
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dynamics is

xt+1 =

 xt,1
2k∆txt,1+1

xt,2 +
k∆tx2t,1

2k∆txt,1+1


F (xt)

+wt,

where ∆t = 0.1 is the sampling time. We can measure the total pressure, that is

yt =
[
1 1

]
xt + vt,

where vt ∼ N (0, 0.12) (R = 0.12) and wt ∼ N (0, 0.0012I2) (Q = 0.0012I2). Suppose that

x0 = [3 1]ᵀ while our prior knowledge about x0 is x̄0 = [0.1 4.5]ᵀ and P0 = 62I2.
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We see that the estimates are of rather poor quality and P̂B,t|t gives negative pressure values,

which do not make sense.

Next, we formulate the following FIE-MHE problem that is solved at time T − 1 using all

measurements y0:T−1

PT (y0:T−1) : minimise
x0:T ,w0:T−1,v0:T−1

1
2
‖x0 − x̄0‖2

P−1
0

+ 1
2

T−1∑
t=0

‖wt‖2
Q−1 + ‖vt‖2

R−1 , (15.28a)

subject to: xt+1 = F (xt) + wt, t ∈ IN[0,T−1], (15.28b)

yt = [1 1]xt + vt, t ∈ IN[0,T−1], (15.28c)

xt ≥ 0, t ∈ IN[0,T ]. (15.28d)
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