
ELE8088: Control & Estimation Theory QUB, 2021

Handout 14: Kalman Filter

Lecturer: Pantelis Sopasakis Date:

Topics: Gauss-Markov model ◦ Kalman Filter ◦ KF is BLUE ◦ Bayesian Interpretation of

the KF ◦ Maximum likelihood estimation ◦ Maximum a posteriori estimation ◦ KF is a

recursive MAPE ◦ Forward Dynamic Programming and KF.

Last update: May 29, 2022 at 16:45:37



14-2 Handout 14: Kalman Filter

14.1 Gauss-Markov Model

Consider the linear dynamical system (without an input)

xt+1 = Atxt +Gtwt, (14.1a)

yt = Ctxt + vt, (14.1b)

where xt ∈ IRnx is the system state, yt ∈ IRny is the output, wt ∈ IRnw is a noise term acting

on the system dynamics known as process noise, and vt ∈ IRnv is a measurement noise term.

Assumptions: (i) IE[wt] = 0 and IE[vt] = 0 for all t ∈ IN, (ii) x0, (wt)t and (vt)t are mutually

independent random variables1, (iii) wt and vt are normally distributed and IE[wtw
ᵀ
t ] = Qt,

IE[vtv
ᵀ
t ] = Rt. Lastly, x0 is a random variable and (iv) x0 ∼ N (x̃0, P0).

As an example, consider the system

xt+1 =
[

0.5 0.3
−0.2 0.5

]
xt + wt, (14.2)

where wt ∼ N ([ 0
0 ] , [ 0.10 0.05

0.05 0.15 ]), and the initial condition:

x0 ∼ N
([

5
−1

]
, [ 0.9 0.4

0.4 0.3 ]
)
. (14.3)

The evolution of the system states — which are random variables — starting from the above

initial condition is illustrated in Figure 14.1.

For the system in Equation (14.1), define x̃t = IE[xt]; then,

x̃t+1 = IE[xt+1] = IE[Atxt +Gtwt] = AtIE[xt] = Atx̃t. (14.4)

Define Pt = Var[xt]. Then,

Pt+1 = IE
[
(xt+1 − x̃t+1)(xt+1 − x̃t+1)ᵀ

]
= IE

[
(Atxt +Gtwt − Atx̃t)(Atxt +Gtwt − Atx̃t)ᵀ

]
= IE

[
(At(xt − x̃t) +Gtwt)(At(xt − x̃t) +Gtwt)

ᵀ

]
= IE

[
At(xt − x̃t)(xt − x̃t)ᵀAᵀ

t + 2At(xt − x̃t)wᵀ
tG

ᵀ
t +Gtwtw

ᵀ
tG

ᵀ
t

]
= AtPtA

ᵀ
t +GtQtG

ᵀ
t . (14.5)

1therefore, IE[wtw
ᵀ

l ] = 0 for t 6= l, and IE[vtv
ᵀ

l ] = 0 for t 6= l



Handout 14: Kalman Filter 14-3

−2 −1 0 1 2 3 4 5 6 7 8 9
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x0 ∼ N
([

5
−1

]
, [ 0.9 0.4

0.4 0.3 ]
)

x1 ∼ N
([

2.2
−1.5

]
, [ 0.472 0.081

0.081 0.181 ]
)x2 ∼ N

([
0.65
−1.19

]
, [ 0.259 0.045

0.045 0.198 ]
)

x3 ∼ N
([ −0.03
−0.72

]
, [ 0.196 0.062

0.062 0.201 ]
)

x1

x
2

Figure 14.1: Illustration of the Gauss-Markov model

Exercise 1 (KK). !For simplicity, assume that At = A, Bt = B, Gt = G and Qt = Q for all

t ∈ IN. Determine the covariance matrix Pt,l := Cov(xt, xl) for t, l ∈ IN, as a function of P0,

A, G, Q, t and l.

Exercise 2 (KKK). Show that the random process (xt)t is a Markov process, i.e.,

pxt+1|x0,x1,...,xt(xt+1 | x0, x1, . . . , xt) = pxt+1|xt(xt+1 | xt), (14.6)

but (yt)t is not necessarily Markovian2. More generally, for 0 ≤ t0 < t1 < . . . < tk ≤ t, show

that

pxt+1|xt0 ,xt1 ,...,xtk (xt+1 | xt0 , xt1 , . . . , xtk) = pxt+1|xtk (xt+1 | xtk). (14.7)

Exercise 3 (KK). Consider the following dynamical system

xt+1 = [ 1 0
0.1 1 ]xt + [ 1

0 ]wt, (14.8a)

y1 = [ 1 1 ]xt + vt, (14.8b)

where wt ∼ N (0, 1), vt ∼ N (0, 5) and x0 ∼ N ([ 0
0 ] , [ 20 5

5 20 ]). Write a Python or MATLAB

script to determine x̃20, P20 = IE[(x20 − x̃20)(x20 − x̃20)ᵀ] and Cov(x20, x50).

2It suffices to show that IE[y2 | y1] is not the same as IE[y2 | y0, y1].
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Exercise 4 (KK). [Important] Consider a dynamical system of the form xt+1 = Axt + wt,

where wt is a time-uncorrelated random variable with zero mean (not necessarily normally

distributed) and the pdf of wt is a function pwt . Let us denote the conditional density

function of xt+1 given xt by pxt+1|xt ; then show that3

pxt+1|xt(xt+1 | xt) = pwt(xt+1 − Axt). (14.9)

3Hint: to show that two pfds are equal, you may show that the corresponding cdfs are equal (why?) —

the latter is easier.

Pantelis Sopasakis
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14.2 Kalman Filter

The random variables x0 and y0 are jointly normal with IE[x0] = x̃0, IE[y0] = IE[C0x0 + v0] =

C0x̃0. The variance of x0 is Var[x0] = P0. The variance of y0 is

Var[y0] = Var[C0x0 + v0] = C0P0C
ᵀ

0 +R0. (14.10)

The covariance of x0 with y0 is

Cov(x0, y0) = IE[(x0 − x̃0)(y0 − ỹ0)ᵀ], where ỹ0 = IE[y0]

= IE[(x0 − x̃0)(C0x0 + v0 − C0x̃0)ᵀ]

= IE[(x0 − x̃0)(C0(x0 − x̃0) + v0)ᵀ]

= IE[(x0 − x̃0)(x0 − x̃0)ᵀCᵀ

0 + (x0 − x̃0)vᵀ

0] = P0C
ᵀ

0. (14.11)

Therefore,[
x0

y0

]
∼ N

([
x̃0

C0x̃0

]
,

[
P0 P0C

ᵀ

0

C0P0 C0P0C
ᵀ

0 +R0

])
. (14.12)

Suppose we measure y0. What is x0 given y0? Since (x0, y0) is jointly normally distributed

as in Equation (14.12), x0 | y0 is normally distributed. We may define the estimator x̂0|0 :=

IE[x0 | y0], which is4

x̂0|0 = x̃0 + P0C
ᵀ

0(C0P0C
ᵀ

0 +R0)−1(y0 − C0x̃0), (14.13)

and the estimator variance, Σ0|0 := Var[x0 | y0], which is5

Σ0|0 = P0 − P0C
ᵀ

0(C0P0C
ᵀ

0 +R0)−1C0P0 (14.14)

Having observed y0 at t = 0 we want to estimate x1; we compute x̂1|0 := IE[x1 | y0] which is

x̂1|0 = A0x̂0|0. (14.15)

The estimator variance, Σ1|0 = Var[x1 | y0], is

Σ1|0 = A0Σ0|0A
ᵀ

0 +G0Q0G
ᵀ

0. (14.16)

4See Handout 11, Theorem 11.1 (conditioning of multivariate normals)
5See Handout 11, Section 11.3.1 (multivariate normal distributions).
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The output at t = 1 given the observation of y0 is expected to be

ŷ1|0 = IE[y1 | y0] = C1x̂1|0, (14.17)

and its (conditional) variance is

Var[y1 | y0] = C1Σ1|0C
ᵀ

1 +R1, (14.18)

(can you see why?) and the covariance between x1 and y1, conditional on y0, is

Cov(x1, y1 | y0) := IE[(x1 − x̃1)(y1 − ỹ1)ᵀ | y0] = Σ1|0C
ᵀ

1. (14.19)

Overall,[
x1

y1

]∣∣∣∣∣ y0 ∼ N

([
x̂1|0

C1x̂1|0

]
,

[
Σ1|0 Σ1|0C

ᵀ

1

C1Σ1|0 C1Σ1|0C
ᵀ

1 +R1

])
. (14.20)

Once we obtain a measurement y1,

x̂1|1 = IE[x1 | y0, y1] = x̂1|0 + Σ1|0C
ᵀ

1(C1Σ1|0C
ᵀ

1 +R1)−1(y1 − C1x̂1|0), (14.21a)

Σ1|1 = Var[x1 | y0, y1] = Σ1|0 − Σ1|0C
ᵀ

1(C1Σ1|0C
ᵀ

1 +R1)−1C1Σ1|0. (14.21b)

Kalman Filter Equations:

Measurement update

[
x̂t|t = x̂t|t−1 + Σt|t−1C

ᵀ
t (CtΣt|t−1C

ᵀ
t +Rt)

−1(yt − Ctx̂t|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
ᵀ
t (CtΣt|t−1C

ᵀ
t +Rt)

−1CtΣt|t−1

Time update

[
x̂t+1|t = Atx̂t|t

Σt+1|t = AtΣt|tA
ᵀ
t +GtQtG

ᵀ
t

Initial conditions

[
x̂0|−1 = x̃0

Σ0|−1 = P0

Note that we have defined: (i) x̂t|t := IE[xt | y0, y1, . . . , yt], (ii) x̂t+1|t := IE[xt+1 | y0, y1, . . . , yt],

(iii) Σt|t := Var[xt | y0, y1, . . . , yt], and (iv) Σt+1|t := Var[xt+1 | y0, y1, . . . , yt].

Exercise 5 (KKK). Derive the Kalman filter equations for the dynamical system

xt+1 = Atxt +Btut +Gtwt,

yt = Ctxt +Dtut + vt,
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where ut is a control signal that can be observed and wt, vt and x0 are as before.

Exercise 6 (K). Implement the Kalman filter for the following dynamical system

xt+1 = xt + wt, (14.22a)

yt = [ 1 −2 ]xt + vt, (14.22b)

where xt ∈ IR2, yt ∈ IR, wt ∼ N (0, I), vt ∼ N (0, 5), x0 ∼ N (5, 100).

Remarks: The covariance matrices are updated according to

Σt+1|t = AtΣt|t−1A
ᵀ
t + AtΣt|t−1C

ᵀ
t (CtΣt|t−1C

ᵀ
t +Rt)

−1CtΣt|t−1A
ᵀ
t +GtQtG

ᵀ
t , (14.23)

which is a Riccati recursion! We know that the Riccati recursion — under certain assump-

tions6 — converges to a steady-state matrix Σ∞, i.e., Σt+1|t →∞ as t→∞. The covariance

matrices can be computed without the need to obtain any system data (independent of yt).

The state estimates are essentially conditional expectations As such, the Kalman filter is the

“best” we can achieve (minimum conditional variance estimator).

6Exercise 7 (K). What are these assumptions?
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14.3 Application: GPS positioning system

14.3.1 Problem Statement and Kalman Filter

The initial position, x0, of a vehicle is inexactly known: x0 ∼ N (0, 100). The velocity of the

vehicle, ut, is approximately 10 m/s in the following sense ut ∼ N (10, 8). The position of the

vehicle can be measured using a GPS system every h = 0.05 s using a sensor with additive

noise vt ∼ N (0, 15). The dynamics of the position of the vehicle is

xt+1 = xt + hut, (14.24a)

yt = xt + vt. (14.24b)

However, ut is not a zero-mean random variable!

The velocity can be written as ut = ūt +wt, where ūt = 10 m/s and wt ∼ N (0, 8). Since ūt is

constant, ūt+1 = ūt, so[
xt+1

ūt+1

]
=

[
1 h

0 1

]
A

[
xt

ūt

]
xt

+

[
h

0

]
G

wt. (14.25)

The state of the system is xt = (xt, ūt) with

x0 ∼ N ([ 0
10 ] , [ 100 0

0 0 ]) .

The output of the system is yt = [1 0]xt + vt. Overall, the system is in the form of Equation

(14.1), where

A =

[
1 h

0 1

]
, G =

[
h

0

]
, C =

[
1 0

]
, P0 =

[
100 0

0 0

]
, Q = 8, R = 15,

and x̄0 =
[
x̃0
˜̄u0

]
= [ 0

10 ].
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Figure 14.2: (Left) Estimated positions, x̂t|t−1 ( ), x̂t|t ( ) and the unknown true position

( ). The vertical bars show the ±3σ2-intervals around the estimated positions. (Right) Joint

distribution of (x1, y1) and a measurement y1 = 8.64.
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Figure 14.3: Estimated positions, x̂t|t−1 ( ), x̂t|t ( ) and the unknown true position ( ).

We observe that one new data becomes available, the variance of the estimated position

decreases. We also see that Σt+1|t converges to a finite variance and that in this example the

estimation error is very small.
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14.3.2 Intermittent measurements

Suppose we obtain measurements at t = 0, 1, . . . , t1, but then the connection to the GPS

breaks so we have no measurements from t1 + 1 to t2 − 1. At time t2 the connection is

recovered. In that case, we can still apply the Kalman filter by applying only time update

steps when we do not have measurements. This is illustrated in Figure 14.4.
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Figure 14.4: The connection is lost at t1 = 2 and there are no measurements from time 3 to

time 7; then, at t2 = 8, the connection to the GPS is recovered (not shown here). Meanwhile,

we compute the estimates x̂3|2, . . . , x̂8|2 and variances Σ3|2, . . . ,Σ8|2.
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Figure 14.5: The connection is recovered at time t2 = 8; subsequently, we can keep inter-

leaving time and measurement update steps.
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14.4 The KF is BLUE

In this section we will drop the normality assumptions. The Kalman filter is a linear (affine7)

estimator. By combining the measurement and time updates of the Kalman filter, we can

see that

x̂t+1|t = Atx̂t|t−1

system dynamics

+Kt (yt − Ctx̂t|t−1)

prediction error

, (14.26)

where Kt = AtΣt|t−1C
ᵀ
t (CtΣt|t−1C

ᵀ
t +Rt)

−1. The Kalman filter is an affine filter. It is in fact

the “best” affine filter (will explain). Recall that, by definition, x̂t+1|t = IE[xt+1 | y0, . . . , yt],

therefore, the KF is unbiased, i.e.,

IE[x̂t+1|t − xt+1] = IE[IE[xt+1 | y0, . . . , yt]− xt+1] = 0. (14.27)

The conditional expectation of a random variable X given Y = y minimises the following

function8

f(z; y) = IE
[
‖X − z‖2 | Y = y

]
. (14.28)

This means that

f (IE[X | Y = y]; y) ≤ f(z; y), (14.29)

for all estimators z(y). Moreover, define the function F (z; y) = IE[(X − z)(X − z)ᵀ | Y = y].

Then,

F (IE[X | Y = y]; y) 4 F (z; y), (14.30)

However, IE[X | Y = y] can be difficult to determine (without the normality assumption);

in general, it is a nonlinear function of y.

Question: What is the best linear (affine) estimator we can construct?

Suppose that X and Y are jointly distributed. Then the best (minimum variance) estimator

of X given Y = y is IE[X | Y = y]. What is the best affine estimator?

Problem statement: Without assuming that X and Y are (jointly) normally distributed,

suppose we are looking for estimators of the form X̂(y) = Ay+ b, i.e., affine estimators. We

7Often the Kalman Filter is said to be “linear,” but it is in fact an “affine” one.
8See Handout 12, Minimum Variance Estimation Theorem.
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seek to determine A = A? and b = b? so that X̂(y) = A?y + b? is the best affine estimator,

i.e., the best estimator among all affine ones, i.e.,

IE
[
‖X − A?y + b?‖2

]
≤ IE

[
‖X − Ay + b‖2

]
, (14.31)

for any A and b, and its conditional counterpart

IE
[
‖X − (A?y + b?) ‖2 | Y = y

]
≤ IE

[
‖X − (Ay + b) ‖2 | Y = y

]
,

also holds for any A and b.

Theorem 14.1 (KF is BLUE) Suppose that (X, Y ) are jointly distributed with means

IE[X] = mx, IE[Y ] = my and covariance matrix

Var
[
X

Y

]
=

[
Σxx Σxy

Σyx Σyy

]
, (14.32)

with Σyy � 0. The best affine estimator of X given Y is X̂(Y ) = A?Y + b? with

A? = ΣxyΣ
−1
yy , and b? = mx − A?my. (14.33)

In particular, IE
[
‖X − X̂(Y )‖2

]
≤ IE [‖X − (AY + b)‖2] , for any parameters A and b.

Remarks: The estimator can be written as X̂(Y ) = mx + A?(Y −my). The Kalman filter

is the best affine filter in the sense that it minimises the mean square error, IE[‖X − X̂‖2].

Theorem 14.1 does not require that X or Y be Gaussian. We can prove a similar result for

the covariance matrix IE[(X − X̂)(X − X̂)ᵀ] (guess what...). Later we will show that KF is

the best affine filter.

Before the Proof. We will use the following observations: for an n-dimensional random

variable Z:

IE[‖Z‖2] = IE[ZᵀZ] = IE[trace(ZZᵀ)] = trace IE[ZZᵀ]. (14.34)

Secondly, Var[Z] = IE[ZZ>]− IE[Z]IE[Z]ᵀ, so IE[ZZ>] = Var[Z] + IE[Z]IE[Z]ᵀ, therefore,

IE[‖Z‖2] = trace IE[ZZ>] = trace Var[Z] + trace (IE[Z]IE[Z]ᵀ) . (14.35)
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Note also that IE[X − AY − b] = mx − Amy − b.

Proof: It is

IE[‖X − AY − b‖2] = trace Var[X − AY − b] + trace(IE[X − AY − b]( · )ᵀ)

= trace Var[X − AY − b] + ‖mx − Amy − b‖2, (14.36)

where

Var(X − AY − b) = IE[(X −mx − A(Y −my))( · )ᵀ]

= IE[(X −mx)(X −mx)
ᵀ] + IE[A(Y −my)(Y −my)

ᵀAᵀ]

− A(Y −my)IE[X −mx]
ᵀ − IE[X −mx](Y −my)

ᵀAᵀ

= Σxx + AΣyyA
ᵀ − AΣyx − ΣxyA

ᵀ, (14.37)

therefore,

IE[‖X−AY − b‖2] = trace [Σxx + AΣyyA
ᵀ − AΣyx − ΣxyA

ᵀ] +‖mx−Amy− b‖2. (14.38)

Now observe that

(A− ΣxyΣ
−1
yy )Σyy(A− ΣxyΣ

−1
yy )ᵀ = AΣyyA

ᵀ − ΣxyA
ᵀ − AΣyx + ΣxyΣ

−1
yy Σyx. (14.39)

The mean square error can be written as

IE[‖X − AY − b‖2] = trace[Σxx − ΣxyΣ
−1
yy Σyx]

independent of A and b

+ trace[(A− ΣxyΣ
−1
yy )Σyy(A− ΣxyΣ

−1
yy )ᵀ] + ‖mx − Amy − b‖2. (14.40)

All terms are nonnegative. The term Σxx − ΣxyΣ
−1
yy Σyx is the Schur complement of Σ, so it

is positive semidefinite. The first term is independent of A and b. The second term can be

made 0 by taking A = ΣxyΣ
−1
yy and the third term vanishes if we take b = mx − Amy.

Exercise 8 (K). Suppose that (X, Y ) are jointly distributed with means IE[X] = mx,

IE[Y ] = my and covariance matrix

Var
[
X

Y

]
=

[
Σxx Σxy

Σyx Σyy

]
, (14.41)

with Σyy � 0. Showthat the best affine estimator of X given Y is X̂(Y ) = A?Y + b? with

A? = ΣxyΣ
−1
yy , and b? = mx − A?my, (14.42)
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in the sense that

IE
[
(X − X̂(y))(X − X̂(y))ᵀ

]
4 IE [(X − Ay − b)(X − Ay − b)ᵀ] , (14.43)

for any parameters A and b.

Hint: follow the steps of the proof of the theorem we just stated, omitting the trace.

Exercise 9 [Estimator bias and variance] (K). Show that the best linear estimator, X̂(Y ) =

A?Y + b?, with

A? = ΣxyΣ
−1
yy ,

b? = mx − A?my.

is unbiased, i.e., IE[X − X̂(Y )] = 0 and its variance (the variance of the estimator error,

X − X̂(Y )) is

Var[X − X̂(Y )] = Σxx − ΣxyΣ
−1
yy Σyx.

Assumptions: x0, (wt)t and (vt)t are mutually independent random variables (not necessarily

Gaussian) with IE[wt] = 0, IE[vt] = 0, IE[x0] = x̃0, and Var[wt] = Qt, Var[vt] = Rt, Var[x0] =

P0. Then (x0, y0) is jointly distributed with mean

IE

[
x0

y0

]
=

[
x̃0

C0x̃0

]
, (14.44)

and variance-covariance matrix

Var

[
x0

y0

]
=

[
P0 P0C

ᵀ

0

C0P0 C0P0C
ᵀ

0 +R0

]
. (14.45)

By the BAE Theorem, the best affine estimator of x0 given y0 is

x̂0(y0) = x̃0 + P0C
ᵀ

0(C0P0C
ᵀ

0 +R0)−1(y0 − C0x̃0). (14.46)

and the error covariance is

Var[x0 − x̂0(y0)] = P0 − P0C
ᵀ

0(C0P0C
ᵀ

0 +R0)−1C0P0. (14.47)

These are the same formulas as in the Kalman filter!

We can easily show recursively that the Kalman filter is the Best (minimum variance, minimal

covariance matrix) Linear (actually affine) Unbiased Estimator (BLUE). “Best linear” means

that it is the best among all linear estimators — however, there may be some nonlinear

estimator that leads to a lower variance. Without the normality assumption, the

Kalman filter is not a minimum variance estimator.
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14.5 Bayesian Interpretation

We will give an alternative interpretation and derivation of the Kalman filter equations.

We will first describe the maximum a posteriori (MAP) Bayesian estimation methodology.

This will be the basis for the Moving Horizon Estimation methodology that is applicable to

nonlinear and constrained systems.

14.5.1 Interlude: Maximum Likelihood Estimation

Suppose a random variable Y has a pdf pY ( · ; θ), that depends parametrically on a (scalar or

vector) θ. Note that θ is treated as an unknown, but deterministic (not random) parameter

and we do not assume that we have some prior information about it. For example, if

Y ∼ N (µ, σ2), the parameter vector of the distribution of Y is θ = (µ, σ2). Having obtained

some independent samples, yN = (yi)
N
i=1, from this distribution, the objective is to estimate θ.

Let us give a few examples. A coin has probability p to land heads and 1−p to land tails. We

toss it N times. How can we estimate p from our observations? The number of customers

entering a store every day is known to follow the Poisson distribution with parameter λ.

We observe and record the total number of customers on N different days. How can be

estimate λ? The wealth of people in society can be modelled by the Pareto distribution with

parameters α and xm. We randomly select a sample of N people and record their wealth.

How can we estimate α and xm? What is the most likely value of these parameters given

the observed data? In general, a parameter θ ∈ Θ needs to be estimated from independent

samples yi, i = 1, . . . , N that follow the same distribution with pdf p( · ; θ)

Suppose that the random variables yN = (yi)
N
i=1 are samples generated by a probability

distribution with density p( · ; θ), there θ ∈ Θ is a parameter from a parameter space Θ.

Define the likelihood function of θ given yN as

L(θ;yN) = p(yN ; θ). (14.48)

The maximum likelihood estimate of θ is

θ̂mle ∈ arg max
θ∈Θ

L(θ;yN). (14.49)

It is often convenient to work with the log-likelihood function

`(θ;yN) = logL(θ;yN), (14.50)
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with the convention log 0 = −∞. In terms of the the log-likelihood function,

θ̂mle ∈ arg max
θ∈Θ

`(θ;yN). (14.51)

If y1, . . . , yN are independent, then

L(θ;yN) = p(yN ; θ) =
N∏
i=1

p(yi; θ)⇒ `(θ,yN) =
N∑
i=1

log p(yi; θ). (14.52)

Example. Suppose that the samples y1, . . . , yN are independent and follow the univariate

normal distribution with an unknown mean µ0 and unknown variance σ2
0. The parameter

we want to estimate is θ = (µ, σ2) and Θ = IR× [0,∞).

The maximum likelihood estimate is

θ̂ ∈ arg max
θ∈Θ

`(θ; y1, . . . , yN), (14.53)

where

`(θ; y1, . . . , yN) =
N∑
i=1

log
1√

2πσ2
exp

[
−(yi − µ)2

2σ2

]

= − N

2
log(2πσ2)−

N∑
i=1

(yi − µ)2

2σ2
. (14.54)

In order to determine the maximum, we differentiate with respect to µ and σ2

∂

∂µ
`(θ; y1, . . . , yN) =

1

σ2

[
N∑
i=1

yi −Nµ

]
, (14.55a)

∂

∂σ2
`(θ; y1, . . . , yN) =

1

2σ2

(
N∑
i=1

(yi − µ)2

σ2
−N

)
. (14.55b)

By setting the derivatives equal to zero and solving for µ and σ2 we find that

µ̂ = 1
N

N∑
i=1

yi, (14.56a)

σ̂2 = 1
N

N∑
i=1

(yi − µ̂)2. (14.56b)
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Note that the estimate µ̂ (of µ0) is unbiased

IE[µ̂] = IE

[
1
N

N∑
i=1

yi

]
= µ0, (14.57)

But the estimate σ̂2 (of σ2
0) is not unbiased since9

IE[σ̂2] =
N − 1

N
σ2

0, (14.58)

nevertheless, σ̂2 is asymptotically unbiased since IE[σ̂2]→ σ2
0 as N →∞.

Exercise 10 (K). (i) Show that the maximum value of the likelihood given in Equation

(14.54) is

`(θ̂) = − N

2
(1 + log(2πσ̂2)). (14.59)

(ii) Show that the Hessian of ` at θ̂ = (µ̂, σ̂2) is negative semidefinite, therefore, indeed the

maximum of ` is attained at θ̂.

Exercise 11 (K). Show that for the MAP estimates µ̂ and σ̂2 given in the previous slide,

we have

IE[µ̂] = µ0, (14.60a)

IE[σ̂2] =
N − 1

N
σ2

0. (14.60b)

Exercise 12 [Exponential distribution] (K). The exponential distribution with parameter

λ > 0 is

p(x;λ) = λe−λx1[0,∞)(x), (14.61)

where 1[0,∞)(x) = 1 for x ≥ 0 and 1[0,∞)(x) = 0 otherwise. Determine the max likelihood

estimate of λ given a set of independent samples x1, . . . , xN . Spoilers: you should find that

λ̂ =
N∑N
i=1 xi

. (14.62)

Show that this estimator is not unbiased.

9See Exercise 11



14-18 Handout 14: Kalman Filter

14.5.2 Maximum a posteriori Estimation

In maximum likelihood estimation (MLE) we treated θ as non-random parameter. In max-

imum a posteriori estimation (MAPE) we treat θ as a random variable for which there is

some known prior, p(θ).

The posterior distribution of θ, given some observation x, becomes10

p(θ | x) =
p(x | θ)p(θ)

p(x)
=
p(x | θ)p(θ)∫

Θ
p(x, θ)dθ

=
p(x | θ)p(θ)∫

Θ
p(x | θ)p(θ)dθ

. (14.63)

Note that the denominator does not depend on θ, so we can write

p(θ | x) ∝ p(x | θ)p(θ), (14.64)

where the symbol “∝” means “proportional to”11.

The maximum a posteriori estimate consists in estimating θ by maximising the posterior

distribution, p(θ | x), that is

θ̂map(x) ∈ arg max
θ∈Θ

p(θ | x) = arg max
θ∈Θ

p(x | θ)p(θ). (14.65)

Example. Suppose that x1, . . . , xN are independent samples that follow the univariate

normal distribution, N (µ, σ2), with some known variance σ2 and unknown mean µ.

We will treat µ as a random variable. We assume that µ ∼ N (µ0, σ
2
µ). Then,

µ̂map ∈ arg max
µ

p(µ | x1, . . . , xN) = arg max
µ

p(x1, . . . , xN | µ)p(µ)

= arg max
µ

1√
2πσ2

µ

exp

[
−(µ− µ0)2

2σ2
µ

]
p(µ)

N∏
i=1

1√
2πσ2

exp

[
−(xi − µ)2

2σ2

]
p(x1,...,xN |µ)

= arg max
µ

−(µ− µ0)2

2σ2
µ

−
N∑
i=1

(xi − µ)2

2σ2
.

After some algebraic manipulations we may find that

µ̂map =
σ2µ0 + σ2

µ

∑N
i=1 xi

Nσ2
µ + σ2

.

10By Bayes rule: p(θ | x)p(x) = p(x | θ)p(θ)
11This means that p(θ | x) = C(x)p(x | θ)p(θ), where the constant C(x), which does not depend on θ, is

C(x) = p(x)−1



Handout 14: Kalman Filter 14-19

Another Example:12 Let X be a real-valued continuous random variable with pdf

pX(x) = 6x(1− x)1[0,1](x), (14.66)

where 1[0,1](x) = 1 for x ∈ [0, 1] and 1[0,1](x) = 0 otherwise. Suppose that Y is another

real-valued random variable and Y | X = x ∼ Geometric(x), i.e.,

pY |X(y | x) = x(1− x)y−1. (14.67)

The objectives are to (i) determine a MAP estimate of X given Y = 2, and (ii) determine

the MAP estimate of X given Y = y [the second one is left to you as an exercise].

The posterior distribution of X given Y = y is

pX|Y (x | y) ∝ pY |X(y | x)pX(x)

= x(1− x)y−1 · 6x(1− x)1[0,1](x)

∝ x2(1− x)y1[0,1](x), (14.68)

and its logarithm is

log pX|Y (x | y) = 2 log(x) + y log(1− x) + const,

defined for x ∈ [0, 1]13. The MAP estimate of X given Y = 2 is determined by

x̂MAP(2) ∈ arg max
x∈[0,1]

2 log(x) + 2 log(1− x) = 1
2
.

Estimation from noisy measurements: Suppose X ∼ N (0, σ2
X), N ∼ N (0, σ2

N) are

independent and Y = X +N . We measure Y and need to estimate X.

Minimum variance estimation: We have shown that

x̂mve(y) := IE[X | Y = y] =
σ2
Xy

σ2
X + σ2

N

.

Maximum likelihood estimation. It is (X | Y = y) = y −N ∼ (y, σ2
N) and

x̂mle(y) ∈ arg max pX|Y (x | y)

= arg max 1
σN
√

2π
exp

(
−(x− y)2

2σ2
N

)
= y.

12Credit: This is based on Problem 1 in https://www.probabilitycourse.com/chapter9/9_2_0_ch_

probs.php.
13Alternatively, we can write log pX|Y (x | y) = 2 log(x) + y log(1−x) + const− δ[0,1](x), where δ(0,1) is the

indicator function of (0, 1), i.e., δ(0,1)(x) = 0 for x ∈ (0, 1) and δ(0,1)(x) =∞ for x /∈ (0, 1)

https://www.probabilitycourse.com/chapter9/9_2_0_ch_probs.php
https://www.probabilitycourse.com/chapter9/9_2_0_ch_probs.php
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Maximum a posteriori estimation. The MAP estimate is

x̂mape(y) ∈ arg max
x

pY |X(y | x)pX(x) = arg max
x

−
[

(y − x)2

2σ2
N

+
x2

2σ2
X

]
=

σ2
Xy

σ2
X + σ2

N

.

Overall,

Method Estimate, x̂(y) Notes

MVE x̂mve(y) =
σ2
Xy

σ2
X+σ2

N
Unbiased, minimum variance

MLE x̂mle(y) = y Ignores distr of X (prior)

MAPE x̂map(y) =
σ2
Xy

σ2
X+σ2

N
Same as MVE (in this case)

14.5.3 KF is a recursive MAP estimator

Consider the dynamical system

xt+1 = Axt + wt, (14.69a)

yt = Cxt + vt, (14.69b)

where wt ∼ N (0, Q) is time-independent, vt ∼ N (0, R) is time-independent, wt is indepen-

dent of vt and x0 ∼ N (x̄0, P0) is independent of w0 and v0
14.

pwt(w) ∝ exp
[
−1

2
‖w‖2

Q−1

]
, (14.70a)

pvt(v) ∝ exp
[
−1

2
‖v‖2

R−1

]
, (14.70b)

px0(x0) ∝ exp
[
−1

2
‖x0 − x̄0‖2

P−1
0

]
. (14.70c)

Given a set of measurements y0, y1, . . . , yN−1 we need to estimate x0, x1, . . . , xN .

In Exercises we will state a number of important results that will be essential to develop the

Bayesian interpretation of the Kalman filter. There are good candidates for the final exam.

Exercise 13 (KK).! Let N ∈ IN. Use the properties of the conditional density function to

show that

p(y0, y1, . . . , yN) = p(y0)
N∏
t=1

p(yt | y0:t−1), (14.71)

14Recall the notation ‖w‖2Q−1 := wᵀQ−1w.
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where y0:t = (y0, . . . , yt). How can we determine p(yN) if we have p(y0, . . . , yN)?

Exercise 14 (KK). !Use the properties of the conditional density function and the Marko-

vianity of (xt)t to show that for any N ∈ IN

p(x0, x1, . . . , xN) = p(x0)
N−1∏
t=0

pwt(xt+1 − Axt). (14.72)

How can we determine p(xN) if we have p(x0, . . . , xN)?

Exercise 15 (KK). !Show that for all N ∈ IN

p(x0, . . . , xN , w0, . . . , wN−1) =

0, if not xt+1 = Axt + wt,

px0(x0)
∏N−1

t=0 pwt(wt), otherwise

Exercise 16 (KK). !Use Bayes rule to show that

p(x0, . . . , xN | y0, . . . , yN−1) ∝ px0(x0)
N−1∏
t=0

pvt(yt − Cxt)pwt(xt+1 − Axt). (14.73)

where N ∈ IN. How can we determine p(x0 | y0, . . . , yN−1) in terms of px0(x0), pvt(yt −
Cxt), and pwt(xt+1 − Axt) for t ∈ IN[0,N−1]?

From Exercise 16 the log-likelihood is (omitting the constant term)

log p(x0, . . . , xN | y0, . . . , yN−1)

= log px0(x0) +
N−1∑
t=1

log pvt(yt − Cxt) + log pwt(xt+1 − Axt)

= − 1
2
‖x0 − x̄0‖2

P−1
0

+
N−1∑
t=0

−‖yt − Cxt‖2
R−1 − ‖xt+1 − Axt‖2

Q−1 . (14.74)
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Using the result of this exercise, we have the MAP estimate

(x̂t)
N−1
t=0 = arg max

x0,...,xN−1

p(x0, . . . , xN−1 | y0, . . . , yN)

= arg max
x0,...,xN−1

log p(x0, . . . , xN−1 | y0, . . . , yN)

= arg max
x0,...,xN−1

−1
2
‖x0 − x̄0‖2

P−1
0

+
N−1∑
t=0

−‖yt − Cxt‖2
R−1 − ‖xt+1 − Axt‖2

Q−1

= arg min
x0,...,xN−1

1
2
‖x0 − x̄0‖2

P−1
0

+
N−1∑
t=0

‖yt − Cxt‖2
R−1 + ‖xt+1 − Axt‖2

Q−1 . (14.75)

In fact we can write it as

(x̂t)
N−1
t=0 = arg min

x0,...,xN ,
w0,...,wN−1,
v0,...,vN−1,

xt+1=Axt+wt,t∈IN[0,N−1]

yt=Cxt+vt,t∈IN[0,N ]

1
2
‖x0 − x̄0‖2

P−1
0

+
N−1∑
t=0

1
2
‖vt‖2

R−1 + 1
2
‖wt‖2

Q−1 . (14.76)

We need to solve the problem

minimise
x0,...,xN ,

w0,...,wN−1,
v0,...,vN−1

1
2
‖x0 − x̄0‖2

P−1
0

+
N−1∑
t=0

1
2
‖vt‖2

R−1 + 1
2
‖wt‖2

Q−1 , (14.77a)

subject to: xt+1 = Axt + wt, t ∈ IN[0,N−1], (14.77b)

yt = Cxt + vt, t ∈ IN[0,N ], (14.77c)

which is akin to a linear-quadratic optimal control problem. Key difference: arrival cost

instead of terminal cost and the initial condition is not fixed. The problem can be written

as follows:

minimise
x0,...,xN ,
w0,...,wN−1

1
2
‖x0 − x̄0‖2

P−1
0

`x0 (x0)

+
N−1∑
t=0

1
2
‖yt − Cxt‖2

R−1 + 1
2
‖wt‖2

Q−1

`t(xt,wt)

, (14.78a)

subject to: xt+1 = Axt + wt, t ∈ IN[0,N−1]. (14.78b)

This is known as the full information estimation problem.

Exercise 17 (KK).! An alternative way to state the estimation problem is to use the

result of Exercise 15 and consider the posterior distribution of x0, . . . , xN , w0, . . . , wN−1
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given the measurements y0, . . . , yN−1. Define x0:N = (x0, . . . , xN) and, likewise, w0:N−1 =

(w0, . . . , wN−1). Show that

p(x0:N , w0:N−1 | y0:N−1) ∝ p(x0:N , w0:N−1)p(y0:N−1 | x0:N , w0:N−1), (14.79a)

where

p(y0:N−1 | x0:N , w0:N−1) =
N−1∏
t=0

pyt|xt,wt(yt | xt, wt) =
N−1∏
t=0

pvt(yt − Cxt). (14.79b)

Derive the full information state estimation problem (for the estimation of x0:N and w0:N−1

given y0:N−1) using Equation (14.79). Use the convention log 0 = −∞.

14.5.4 Forward DP Solution

The estimation problem becomes

minimise
x0,...,xN−1

`x0(x0) +
N−1∑
t=0

`t(xt, wt), (14.80a)

subject to: xt+1 = Axt + wt, t ∈ IN[0,N−1]. (14.80b)

We apply the DP procedure in a forward fashion:

V̂ ?
N = min

x0,...,xN
w0,...,wN−1

{
`x0(x0) +

N−1∑
t=0

`t(xt, wt)

∣∣∣∣∣ xt+1 = Axt + wt,

t ∈ IN[0,N−1]

}

= min
x1,...,xN

w1,...,wN−1

min
x0,w0

{`x0(x0) + `0(x0, w0) | x1 = Ax0 + w0}

V ?
1 (x1)

+
N−1∑
t=1

`t(xt, wt)

∣∣∣∣∣ xt+1 = Axt + wt,

t ∈ IN[1,N−1]


= min

x1,...,xN
w1,...,wN−1

{
V ?

1 (x1) +
N−1∑
t=1

`t(xt, wt)

∣∣∣∣∣ xt+1 = Axt + wt,

t ∈ IN[1,N−1]

}
. (14.81)
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The forward dynamic programming procedure can be written as

V ?
0 (x0) = `x0(x0), (14.82a)

V ?
t+1(xt+1) = min

xt,wt

{V ?
t (xt) + `t(xt, wt) | xt+1 = Axt + wt} , (14.82b)

V̂ ?
N = min

xN
V ?
N(xN). (14.82c)

We shall prove that the solution of this problem yields the Kalman filter!

Remark. The MAP estimation approach can be also applied when (i) the involved random

variables are not normally distributed, (ii) the dynamics is nonlinear, (iii) the system is

constrained (e.g., we know that xt ∈ X ), (iv) the disturbances are bounded (e.g., wt ∈ W ,

vt ∈ V).

14.5.5 The Kalman Filter as a Forward DP*

To show that Equations (14.82) yield the Kalman Filter, we need two lemmata. Firstly,

Woodbury’s matrix inversion lemma which we state without a proof (see also Handout 4).

Lemma 14.2 (Woodbury matrix identity) The following holds

(S + UCV )−1 = S−1 − S−1U(C−1 + V S−1U)−1V S−1. (14.83)

Secondly, we state and prove the following lemma.

Lemma 14.3 (Factorisation of sum of quadratics) Let Q1 ∈ Sn++, Q2 ∈ Sm++, F ∈
IRm×n, b ∈ IRm. Define

q(x) = 1
2
‖x− x̄‖2

Q−1
1

+ 1
2
‖Fx− b‖2

Q−1
2
. (14.84)

Then for all x ∈ IRn,

q(x) = 1
2
‖x− x?‖2

W−1 + c, (14.85)
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where

x? = x̄+Q1F
ᵀS−1(b− Fx̄), (14.86a)

W = Q1 −Q1F
ᵀS−1FQ1, (14.86b)

c = 1
2
‖Fx̄− b‖2

S−1 , (14.86c)

and where S = Q2 + FQ1F
ᵀ. Moreover,

x? = arg min
x

q(x), and min
x
q(x) = c. (14.87)

Before we give the proof, recall the following very useful identity which holds for Q ∈ Sn+

∇
(

1
2
‖Ax− b‖2

Q

)
= AᵀQ(Ax− b). (14.88)

Proof: Since q is a convex quadratic function, it has a minimiser, x?, which satisfies

∇q(x?) = 0. The idea is that we can use Taylor’s expansion to write q as follows

q(x) = q(x?) +∇q(x?)ᵀ(x− x?) + 1
2
‖x− x?‖2

∇2q(x?)

= q(x?) + 1
2
‖x− x?‖2

∇2q(x?), (14.89)

It suffices to determine x?, q(x?) and ∇2q(x?). Let us first determine x?: we have ∇q(x) =

Q−1
1 (x− x̄) + F ᵀQ−1

2 (Fx− b), and we need to solve ∇q(x?) = 0, that is

Q−1
1 (x? − x̄) + F ᵀQ−1

2 (Fx? − b) = 0, (14.90)

from which

x? = (Q−1
1 + F ᵀQ−1

2 F )−1(Q−1
1 x̄+ F ᵀQ−1

2 b)

= x̄+ (Q−1
1 + F ᵀQ−1

2 F )−1(Q−1
1 x̄+ F ᵀQ−1

2 b − (Q−1
1 + F ᵀQ−1

2 F )x̄)

= x̄+ (Q−1
1 + F ᵀQ−1

2 F )−1F ᵀQ−1
2 (b− Fx̄)

and now we apply Woodbury’s matrix identity (Lemma 14.2) to the term (Q−1
1 +F ᵀQ−1

2 F )−1

= x̄+ (Q1 −Q1F
ᵀ(Q2 + FQ1F

ᵀ)−1FQ1)F ᵀQ−1
2 (b− Fx̄)

= x̄+Q1F
ᵀ

I − (Q2 + FQ1F
ᵀ

S

)−1 FQ1F
ᵀ

S−Q2

Q−1
2 (b− Fx̄)

= x̄+Q1F
ᵀS−1(b− Fx̄), (14.91)
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(see Equation (14.86a)). Next, let us determine q(x?)

q(x?) = 1
2
‖x? − x̄‖2

Q−1
1

+ 1
2
‖Fx? − b‖2

Q−1
2

= 1
2

∥∥∥Q1F
ᵀS−1(b− Fx̄)

∥∥∥2

Q−1
1

+ 1
2

∥∥∥Fx̄− b+ FQ1F
ᵀS−1(b− Fx̄)

∥∥∥2

Q−1
2

= 1
2

∥∥∥Q1F
ᵀS−1(b− Fx̄)

∥∥∥2

Q−1
1

+ 1
2

∥∥∥ (I − FQ1F
ᵀS−1

)
(b− Fx̄)

∥∥∥2

Q−1
2

= 1
2

∥∥∥Q1F
ᵀS−1(b− Fx̄)

∥∥∥2

Q−1
1

+ 1
2

∥∥∥ (I − (S −Q2)S−1
)

(b− Fx̄)
∥∥∥2

Q−1
2

= 1
2

∥∥∥Q1F
ᵀS−1(b− Fx̄)

∥∥∥2

Q−1
1

+ 1
2

∥∥∥Q2S
−1(b− Fx̄)

∥∥∥2

Q−1
2

= 1
2
(b− Fx̄)ᵀS−1FQ1F

ᵀS−1(b− Fx̄)1
2
(b− Fx̄)ᵀS−1Q2S

−1(b− Fx̄)

= 1
2
(b− Fx̄)ᵀS−1(FQ1F

ᵀ +Q2

S

)S−1(b− Fx̄)

= 1
2
(b− Fx̄)ᵀS−1(b− Fx̄) = c. (14.92)

Lastly, it is easy to see that

∇2q(x) = Q−1
1 + F ᵀQ−1

2 F = W−1, (14.93)

where the second equality is due to Lemma 14.2. This completes the proof.

We shall now apply Lemma 14.3 to the case of the Kalman filter.

Proposition 14.4 (MAPE ≡ KF) Suppose that

`x0(x0) = 1
2
‖x0 − x̄0‖2

P−1
0
, (14.94a)

`t(xt, wt) = 1
2
‖yt − Cxt‖2

R−1 + 1
2
‖wt‖2

Q−1 . (14.94b)

Then, the procedure of Equation (14.82) yields the KF equations.

Indeed, the first step in the forward DP is

V ?
1 (x1) = min

x0,w0

{V ?
0 (x0) + `0(x0, w0) | x1 = Ax0 + w0}

= min
x0,w0

{
1
2
‖x0 − x̄0‖2

P−1
0

+ 1
2
‖y0 − Cx0‖2

R−1 + 1
2
‖w0‖2

Q−1 | x1 = Ax0 + w0

}
= min

x0

{
1
2
‖x0 − x̄0‖2

P−1
0

+ 1
2
‖y0 − Cx0‖2

R−1 + 1
2
‖x1 − Ax0‖2

Q−1

}
. (14.95)
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We can use Lemma 14.3 to write the sum of the first two terms as follows:

1
2
‖x0 − x̄0‖2

P−1
0

+ 1
2
‖y0 − Cx0‖2

R−1 = 1
2
‖x0 − x?0‖2

W−1
0

+ 1
2
‖y0 − Cx?0‖2

S−1
0
, (14.96)

where

S0 = R + CP0C
ᵀ, (14.97a)

W0 = P0 − P0C
ᵀS−1

0 CP0, (14.97b)

x?0 = x̄0 + P0C
ᵀSᵀ

0(y0 − Cx̄0). (14.97c)

Note that W0 = Σ0|0 and x?0 = x̂0|0 (see Equations (14.13) and (14.14)). Next, we have

V ?
1 (x1) = 1

2
‖y0 − Cx?0‖2

S−1
0

constant

+ min
x0

{
1
2
‖x0 − x?0‖2

W−1
0

+ 1
2
‖x1 − Ax0‖2

Q−1

}
. (14.98)

From Equation (14.87) we have

V ?
1 (x1) = constant + 1

2
‖x1 − Ax̂0|0‖2

S
−1
0

, (14.99)

where x̂1|0 = Ax̂0|0 and

S0 = Q+ AW0A
ᵀ = Σ1|0, (14.100)

(compare this with Equation (14.16)). Note that V ?
1 has the same form as V ?

1 , so the same

procedure can be repeated. This will yield the same iterates as in Section 14.2.
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