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13.1 Preliminaries: Parametric Distributions

Firstly we need to introduce some standard parametric distributions which are popular in

probability theory and statistics.

13.1.1 Bernoulli

A discrete random variable X supported on {0, 1} is said to follow the Bernoulli distribution

with parameter θ if

P[X = 1] = θ, (13.1)

where θ ∈ [0, 1], which implies that P[X = 0] = 1− θ. We can write concisely

P[X = k] = θk(1− θ)1−k, (13.2)

for k ∈ {0, 1}. We write X ∼ Ber(θ).

The Bernoulli distribution is use to model experiments that have only two outcomes (1:

success, 0: failure). A coin can be modelled using the Bernoulli distribution.

It is easy to confirm that if X ∼ Ber(θ), then IE[X] = θ and Var[X] = θ(1− θ).

13.1.2 Binomial

Consider an experiment where we toss a coin n times and we count the number of heads we

observe — this will be an integer from 0 to n. The number of heads is a random variable

which follows the binomial distribution.

More specifically, suppose X1, X2, . . . , Xn are independent iid Bernoulli random variables

(Xi ∼ Ber(θ)); define Sn = X1+X2+. . .+Xn. Then Sn follows the binomial distribution with

parameters n (number of trials) and θ (probability of success). We write Sn ∼ Binom(n, θ).



Handout 13: Bayesian Estimation 13-3

The probability mass function of the binomial distribution is

P[Sn = k] =

(
n

k

)
θk(1− θ)n−k, (13.3)

for k ∈ {0, 1, . . . , n}, where(
n

k

)
=

n!

k!(n− k)!
, (13.4)

is the binomial coefficient (read: “n-choose-k”).

13.1.3 Beta

A random variable X, supported on [0, 1], is said to follow the Beta distribution with shape

parameters α, β > 0 — denoted as X ∼ Beta(α, β) — if its pdf is

pX(x) ∝ xα−1(1− x)β−1, (13.5)

for x ∈ [0, 1]. In particular, the proportionality coefficient is 1
B(α,β)

where B is the Beta

function1. The effect of α and β on the shape of the pdf is illustrated below.
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Note that Beta(1, 1) is the uniform distribution on [0, 1].

1The Beta function is defined as B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt and has the property B(α, β) =

Γ(α)Γ(β)/Γ(α+ β).
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If X ∼ Beta(α, β), then

IE[X] =
α

α + β
, (13.6)

and the mode of X is

mode(X) = arg max
x∈[0,1]

pX(x) =
α− 1

α + β − 2
, (13.7)

for α, β > 1.

13.1.4 Poisson

A random variable X, supported on IN, is said to follow the Poisson distribution with

parameter λ > 0 if

P[X = k] =
λke−λ

k!
, (13.8)

for k ∈ IN. For the Poisson distribution we have IE[X] = λ and Var[X] = λ.

The Poisson distribution is used to model the number of occurences of events in a certain

time period, if the events happen at a constant mean rate (events/time) and the probability

of the occurence of an event is not conditioned by the occurence of another event. Examples

where the Poisson distribution can be used include (i) the number of meteorites hitting the

Earth in a year, (ii) the number of clients arriving in a shop in a day, and (iii) the number

of goals in a football match.

13.1.5 Gamma

The gamma distribution is a parametric continuous distribution, supported on (0,∞), with

two parameters: (i) α > 0, which is referred to as the shape parameter and (ii) β > 0, which

is known as the rate parameter. The pdf of the gamma distribution, Γ(α, β) is

pX(x;α, β) =
βα

Γ(α)
xα−1e−βx, (13.9)
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for x > 0. We can simply write

pX(x;α, β) ∝ xα−1e−βx. (13.10)

Exercise 1 (K). Let X ∼ Γ(α, β). Show that

IE[X] =
α

β
, (13.11a)

Var[X] =
α

β2
. (13.11b)

Exercise 2 (K). Let X ∼ Γ(α, β) with α ≥ 1. Show that the mode of X is

mode(X) = arg max
x>0

pX(x) =
α− 1

β
. (13.12)

13.1.6 Normal

We say that a real-valued random variable follows the normal distribution with mean µ and

variance σ2 if its pdf is

pX(x) ∝ exp

(
−(x− µ)2

2σ2

)
. (13.13)

We denote this by X ∼ N (µ, σ2) and IE[X] = µ, Var[X] = σ2.

We introduced the multivariate normal distribution, N (µ,Σ), in Handout 11. Let us just

recall that the multivariate normal pdf is

pX(x) =
1

(2π)n/2|Σ|n/2
exp

[
−1

2
(x− µ)ᵀΣ−1(x− µ)

]
, (13.14)

that is,

pX(x) ∝ exp
[
−1

2
(x− µ)ᵀΣ−1(x− µ)

]
. (13.15)
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13.2 Bayesian estimation

In the Bayesian estimation framework, we use some prior information about an unknown pa-

rameter θ ∈ Θ — which we treat as a random variable — and some measurements x1, . . . , xN ,

to update our prior knowledge and produce a posterior distribution of θ.

In particular, we assume that X1, . . . , XN are independent random variables and identicially

distributed with a pdf (or pmf) that depends parametrically on an unknown parameter

θ, i.e., p(xi | θ). We assume that θ follows a prior distribution, p(θ), which reflects our

prior knowledge. The likelihood of the data is the pdf p(x1, . . . , xN | θ) and because of the

independence assumption we have

p(x1, . . . , xN | θ) =
N∏
i=1

p(xi | θ). (13.16)

By Bayes’ theorem, the posterior distribution of θ given the observations x1, . . . , xN is

p(θ | x1, . . . , xN) ∝ p(θ)
N∏
i=1

p(xi | θ). (13.17)

Then we can do a lot with the posterior distribution... For example, we can estimate θ by

extracting a value from the posterior distribution. If we take the mode of the posterior, we

will have precisely a maximum a posteriori (MAP) estimate, that is,

θ̂map(x1, . . . , xN) ∈ arg max
θ∈Θ

p(θ | x1, . . . , xN). (13.18)

But the Bayesian estimation framework does not only give us an estimate (a point), but a

probability distribution, which is a lot more informative.

In summary, the Bayesian estimation approach consists in:

1. Treating θ ∈ Θ as a random variable, which follows a certain prior distribution, p(θ)

2. Obtaining some independent observations, xi, which follow a distribution with pdf (or

pmf) p(xi | θ)
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3. Using Bayes’ formula in Equation (13.17) to determine the posterior — yes, it is just

a multiplication!

How do we know the prior? Examples: (i) we have a regular coin; it is reasonable

to assume that it is described by Ber(θ) where θ is more likely to be close to 0.5, rather

than 0.95 or 0.05. We can use something like θ ∼ Beta(2, 2), or, even better, we can ask

the mint whether they have any idea about θ. (ii) we want to find the percentage of men

in a population; it makes sense to use some prior that encodes the fact that according to

experience and previous studies, this percentage is close to 50%. (iii) we want to know our

position on the map and we have some GPS measurements (which, of course, are corrupted

by noise); we can use some prior information that encodes the fact that we are standing in

the street and we are not inside a building. The choice of the prior is a matter of intuition,

availability of prior information and convenience. Indeed, some priors lend themselves to

easier derivations — these are known as conjugate priors (see Section 13.3).

What if I have no prior information? Then, don’t use the Bayesian approach2.

Spread of the posterior. Lastly, having observed some data x1, . . . , xN , we are interested

in the dispersion of the posterior distribution of θ; it will be interesting to look at the

(conditional) variance of θ (given x1, . . . , xN), which of course depends on the prior. We will

also be interested in determining regions (sets), Rα, such that P[θ ∈ Rα | x1, . . . , xN ] = 1−α,

where α ∈ (0, 1). Such sets are known as credible regions (not “confidence regions”). If θ is

a scalar parameter, we can define a credible interval, [a, b], as one for which∫ b

a

p(θ | x1, . . . , xN)dθ = 1− α. (13.19)

Note that credible intervals are defined for a particular collection of observations, x1, . . . , xN .

2Have a look at this interesting discussion: https://stats.stackexchange.com/q/326484

https://stats.stackexchange.com/q/326484
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13.3 Conjugate Priors

13.3.1 Bernoulli and Binomial Distributions

Example 1 (Estimation of Bernoulli parameter with MAP with Beta prior).

We want to determine whether a coin is fair; to that we obtain a set of N independent

measurements (where heads is 1 and tails is 0), X1, X2, . . . , XN . Every coin toss is a Bernoulli

random variable with parameter θ, that is Xi ∼ Ber(θ), i.e.,

P[heads] = P[X = 1] = θ, (13.20)

or, what is the same,

P[X = k] = θk(1− θ)1−k, k ∈ {0, 1}. (13.21)

Suppose also that we have some prior information about θ. For example, we may believe

that θ is about 0.5; we can describe this by using a prior distribution for θ that can look like

this:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

θ

p(
θ)

Not too sure
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Quite confident

Or we may have reasons to belive (to a greater or lesser extent) that θ follows a distribution

with mode 0.2 in which case it may make sense to choose a prior like this:
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Or we may believe (to a greater or lesser extent) that the expected value of θ is 0.8 in which

case the pdf of θ can look like this:
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We need to choose a parametric distribution for our prior which is flexible enough, but

will not lead to an overly complex MAP estimation problem. In particular, the posterior

distribution, that is, p(θ | x1, . . . , xN) ∝ p(x1, . . . , xN | θ)p(θ), should be of a “convenient”

form.

In this case, it turns out that the Beta distribution is an appropriate prior. Firstly, we can

choose α and β to shape p(θ) as shown above. Secondly, if we assume that θ ∼ Beta(α, β),

i.e., p(θ) ∝ θα−1(1− θ)β−1, then the MAP estimate of θ becomes

θ̂map(x1, . . . , xN) = arg max
θ∈[0,1]

p(x1, . . . , xN | θ)p(θ), (13.22)

where

p(θ | x1, . . . , xN) ∝ p(x1, . . . , xN | θ)p(θ)

∝
N∏
i=1

p(xi | θ) · p(θ)
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∝
N∏
i=1

θxi(1− θ)1−xi

Ber(θ)

· θα−1(1− θ)β−1

Beta(α,β)

= θ
∑

i xi+α−1(1− θ)
∑

i(1−xi)+β−1

= θ
∑

i xi+α−1(1− θ)N−
∑

i xi+β−1

= Beta

(∑
i

xi + α,N −
∑
i

xi + β

)
. (13.23)

We see that if we choose the prior to be a Beta distribution, the posterior is also a Beta

distribution! We say that the Beta distribution is a conjugate prior of the Bernoulli

distribution for the parameter θ. In brief, we showed that

Theorem 13.1 (Bernoulli with Beta prior) Suppose X1, . . . , XN
iid∼ Ber(θ) and θ ∼

Beta(α, β). Then,

θ | x1, . . . , xN ∼ Beta

(∑
i

xi + α,N −
∑
i

xi + β

)
, (13.24)

and the MAP estimate of θ given x1, . . . , xN is

θ̂map(x1, . . . , xN) =

∑
i xi + α− 1

α + β +N − 2
. (13.25)

With regards to the MAP estimate, from Equation (13.7) we have that if both parameters

of the Beta distribution in Equation (13.23) are larger than 1, the MAP estimate of θ given

x1, x2, . . . , xN is

θ̂map(x1, . . . , xN) =

∑
i xi + α− 1

����∑
i xi + α +N −����∑

i xi + β − 2
=

∑
i xi + α− 1

α + β +N − 2
(13.26)

In addition, the fact that the posterior is of the same type as the prior — both are beta

distributions — allows us to compare them. We see that

Beta(α, β)
x1,...,xN

−−−−−−−−→ Beta

(∑
i

xi + α,N −
∑
i

xi + β

)
. (13.27)
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Example 2 (Prior to Posterior). We have a coin which we believe to be fair. In particular,

we believe that its outcome, X, follows a Bernoulli distribution with parameter θ which

follows the Beta distribution, Beta(5, 5). We tossed the coin 20 times and we observed 12

heads. The posterior distribution of θ given the observations is

θ | x1, . . . , x20 ∼ Beta(12 + 5, 20− 12 + 5) = Beta(17, 13). (13.28)

The posterior is shown below and the MAP estimate of θ is θ̂map(x1, . . . , x20) = 0.5714.
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Posterior, Beta(17, 13)

Now suppose that we flip the coin N = 200 times and we observe 110 heads. Then the

posterior is

θ | x1, . . . , x200 ∼ Beta(110 + 5, 200− 112 + 5) = Beta(115, 93), (13.29)

which is shown below.
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We observe that as we accumulate more data, the posterior becomes more narrow. For

comparison,

N Posterior MAP Estimate Posterior Variance

20 Beta(17, 13) 0.5714 0.00792

200 Beta(115, 93) 0.5534 0.00118

Example 3 (Binomial with Beta prior). Suppose that X ∼ Binom(n, θ) where n is

known and fixed and we need to estimate θ from independent observations. Let us assume

that we have some prior knowledge about θ, which is described by the prior θ ∼ Beta(α, β).

We will show that θ | x1, . . . , xN follows a Beta distribution. The reader can follow the same

procedure as above to show that

Theorem 13.2 (Binomial with Beta prior) Suppose that X1, . . . , XN
iid∼

Binom(n, θ), where n is known and θ ∼ Beta(α, β). Then,

θ | x1, . . . , xN ∼ Beta

(∑
i

xi + α, nN −
∑
i

xi + β

)
, (13.30)

Exercise 3 (K). What is the maximum a posteriori estimate of θ? Use Equation (13.30).

Exercise 4 (K). Suppose that (xi)
N
i=1 are independent binomial random variables with xi ∼

Binom(ni, θ), where ni are known and θ ∼ Beta(α, β). Determine the posterior distribution,

p(θ | x1, . . . , xN).

13.3.2 Poisson with gamma prior

Suppose thatX1, X2, . . . , XN are independently identically distributed and follow the Poisson

distribution with an unknown parameter λ > 0. Suppose that we have the prior infromation
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λ ∼ Γ(α, β) with α, β > 0. We will show that the posterior is another Gamma distribution.

In other words, the Gamma distribution is a conjugate prior of Poisson for the parameter

λ > 0.

Theorem 13.3 (Poisson with gamma prior) Suppose that X1, . . . , XN
iid∼

Poisson(λ), where λ ∼ Γ(α, β). Then,

λ | x1, . . . , xN ∼ Γ

(
N∑
i=1

xi + α,N + β

)
. (13.31)

Proof: The posterior distribution is

p(λ | x1, . . . , xN) ∝ p(x1, . . . , xN | λ)p(λ)

∝
N∏
i=1

p(xi | λ) · p(λ)

∝
N∏
i=1

e−λλxi

Poisson(λ)

·λα−1e−βλ

Γ(α,β)

= e−Nλλ
∑

i xiλα−1e−βλ

= e−Nλ−βλλ
∑

i xi+α−1 = Γ

(∑
i

xi + α,N + β

)
, (13.32)

which completes the proof.

Note that the variance of the posterior, according to Equation (13.11b), is

Var[λ | x1, . . . , xN ] =

∑N
i=1 xi + α

(N + β)2
, (13.33)

which goes to 0 as N →∞3.

Exercise 5 (K). What is the MAP estimate of the Poisson parameter λ given the indepen-

dent observations x1, . . . , xN and using the prior λ ∼ Γ(α, β)?

3This statement is not rigorous, but we will skip the details.
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Example 4 (Poisson with Gamma prior). We have obtained the following twenty

measurements from a Poisson distribution with an unknown parameter λ > 0:

4, 7, 0, 5, 3, 4, 4, 3, 3, 411, 2, 2, 8, 2, 7, 6, 5, 3, 1. (13.34)

Suppose we have the prior infromation λ ∼ Γ(15, 5). Following Theorem 13.3, the posterior

distribution of λ given x1, . . . , x20 is

λ | x1, . . . , x20 ∼ Γ

(
N∑
i=1

xi + α,N + β

)
= Γ(99, 25). (13.35)

The prior and posterior distributions are shown below.
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Prior, Γ(15, 5)
Posterior, Γ(99, 25)

The MAP estimate of θ given the above measurements is the mode of Γ(99, 25), the deter-

mination of which is left to the reader as an exercise.

Exercise 6 (Gamma with gamma prior for β). Suppose that X ∼ Γ(α, β) where α > 0

is known and β ∼ Γ(α0, β0). Show that β follows a gamma distribution and determine its

parameters.

Exercise 7 (Exponential with gamma prior). The pdf of an exponential distribu-

tion with parameter λ > 0 (Exp(λ)) is pX(x) = λe−λx, defined for x ≥ 0. Suppose that

X1, . . . , XN are independent samples from Exp(λ) and we assume that λ ∼ Γ(α, β). Deter-

mine a MAP estimate for λ.
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13.3.3 Normal with normal prior

Suppose that X1, . . . , XN are independent samples that follow N (µ, σ2) with a known vari-

ance σ2 and unknown mean µ. We will assume that µ ∼ N (µ0, σ
2
µ). Then, the posterior

distribution of µ given observations x1, . . . , xN is

p(µ | x1, . . . , xN) ∝ p(µ)
N∏
i=1

p(xi | µ)

∝ exp

[
−(µ− µ0)2

2σ2
µ

]
p(µ)

N∏
i=1

exp

[
−(xi − µ)2

2σ2

]
p(x1,...,xN |µ)

= exp

[
−(µ− µ0)2

2σ2
µ

−
N∑
i=1

(xi − µ)2

2σ2

]

∝ exp

[
−µ

2 − 2µ0µ

2σ2
µ

−
N∑
i=1

µ2 − 2xiµ

2σ2

]

∝ exp

[
−1

2

(
σ−2
µ µ2 − 2σ−2

µ µ0µ+ σ−2Nµ2 − 2σ−2µ
∑
i

xi

)]

= exp

[
−1

2

(
(σ−2

µ + σ−2N)µ2 − 2

(
σ−2
µ µ0 + σ−2

∑
i

xi

)
µ

)]

= exp

[
−1

2
(σ−2

µ + σ−2N)

(
µ2 − 2

σ−2
µ µ0 + σ−2

∑
i xi

σ−2
µ + σ−2N

µ

)]
∝ exp

[
−1

2
(σ−2

µ + σ−2N)

(
µ−

σ−2
µ µ0 + σ−2

∑
i xi

σ−2
µ + σ−2N

)2
]

= N
(
σ−2
µ µ0 + σ−2

∑
i xi

σ−2
µ + σ−2N

,
1

σ−2
µ + σ−2N

)
It is interesting to note that the posterior is a normal distribution and that the variance

of the posterior is O(1/N). To put it simply, as we accumulate more data, we become

increasingly more certain about our estimate. The reader can confirm that the maximum a

posteriori estimate of µ is

µ̂map(x1, . . . , xN) =
σ2µ0 + σ2

µ

∑N
i=1 xi

Nσ2
µ + σ2

. (13.36)
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Note that µ̂map is a weighted average of the prior µ0 and the observed sampled mean x̄N =∑N
i=1 xi/N . It is

µ̂map(x1, . . . , xN) =
σ2

Nσ2
µ + σ2

µ0 +
Nσ2

µ

Nσ2
µ + σ2

x̄N . (13.37)

Note also that if N is large,

µ̂map(x1, . . . , xN) ≈ x̄N . (13.38)

Similar results can be obtained for the multivariate case. In particular,

Theorem 13.4 (Normal with a normal prior) Suppose X1, . . . , XN
iid∼ N (µ,Σ)

with known Σ and µ ∼ N (µ0,Σµ). Then,

µ | x1, . . . , xN ∼ N
(
(Σ−1

µ +NΣ−1)−1(Σ−1
µ µ0 + Σ−1SN), (Σ−1

µ +NΣ−1)−1
)
, (13.39)

where SN =
∑N

i=1 xi.

We see that the variance of the posterior converges to 0 at a rate of O(1/N).
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