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11.1 Probability Spaces

11.1.1 Preliminaries: sets

Let A,B be two sets. We denote their union by A ∪ B; it is x ∈ A ∪ B iff x ∈ A or x ∈ B.

We denote their intersection by A ∩B; it is x ∈ A ∩B iff x ∈ A and x ∈ B. We say that A

is a subset of B (we denote A ⊆ B) if x ∈ B whenever x ∈ A (in other words, x ∈ A implies

x ∈ B). Lastly, suppose A ⊆ IRn. The complement of A is denoted by Ac and it is the set

of all elements of IRn that are not in A.

11.1.2 Probability spaces, events and probabilities

A probability space is a model that allows us to study random experiments such as the toss

of a coin or the roll or a die. Let us start by considering a set Ω of all possible outcomes of

a random experiments.

Next, we introduce the concept of an event space. An event is a set of outcomes, A ⊆ Ω,

to which we will later assign a probability value. The event space needs to satisfy certain

axioms. For example, if A1 and A2 are two events, then A1 ∪ A2 is also an event. Formally,

the event space needs to be a σ-algebra. Let us give the definition1.

Definition 11.1 (σ-algebra) A σ-algebra, F , on Ω is a collection of subsets of Ω such

that

1. ∅,Ω ∈ F

2. If A ∈ F , then its complement Ac := Ω \ A ∈ F

3. If A1, A2, . . . ∈ F , then
⋃∞
i=1Ai ∈ F

The collection F = {∅,Ω} is trivially a σ-algebra. The powerset of Ω, that is the set of all

subsets of Ω, is a σ-algebra.

1The definition of a σ-algebra is not examinable
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Next, we can define the probability of an event A, which is denoted by P[A]. A probability

P is a function that maps an event A ∈ F to a number in [0, 1] which satisfies three axioms

which we are about to state. The probability of an event A can be thought of as a measure

of the likelihood of the occurence of that event.

Definition 11.2 (Probability) A probability P is a function that maps an event A ∈ F
to a number in [0, 1], with

1. P[∅] = 0 and P[Ω] = 1

2. A ⊆ B ⇒ P[A] ≤ P[B]

3. If A1, A2, . . . are mutually disjoint, then P [
⋃∞
i=1 Ai] =

∑∞
i=1 P[Ai]

Having given the definition of a σ-algebra and a probability, we can now give the definition

of a probability space.

Definition 11.3 (Probability space) A probability space consists of

1. a sample space, which is a nonempty set Ω

2. the set of events, F , known as a σ-algebra of Ω (F ⊆ 2Ω)

3. a probability P : F → [0, 1]

In other words, a probability space is a triplet (Ω,F ,P).

Note that a pair (Ω,F) consisting of a sample space Ω and an event space (σ-algebra F) is

called a measurable space.

Example (Fair die). Consider a fair die. The sample space is

Ω = { , , , , , } . (11.1)
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Suppose that F = 2Ω. For example,

{ , } ∈ F , ∅ ∈ F , Ω ∈ F , etc. (11.2)

Define P as the unique probability satisfying

P[{ω}] = 1
6
, ∀ω ∈ Ω. (11.3)

Then,

P[{ , }] = P[{ } ∪ { }] = P[{ }] + P[{ }] = 1
3
, (11.4)

and in fact we can compute the probability of any subset of Ω. •

Exercise 1 (Probability of complement) K. Prove that P[Ac] = 1−P[A], for all A ∈ F ;

we denote Ac = Ω \ A. Using this property, determine the probability of rolling a fair die

and not getting . �

Exercise 2 (Probability of union and intersection) KK. Prove that

1. P[A ∩B] ≤ min{P[A],P[B]}, for all A,B ∈ F

2. P[A ∪B] = P[A] + P[B]− P[A ∩B] �

Exercise 3 (De Morgan’s Law #1) KK. Show that

(A ∩B)c = Ac ∪Bc. (11.5)

Hint: Two sets are equal to one another if each is a subset of the other, i.e., A = B means

A ⊆ B and B ⊆ A; show that (A ∩B)c ⊆ Ac ∪Bc and Ac ∪Bc ⊆ (A ∩B)c. �

Exercise 4 (De Morgan’s Law #1) KK. Show that

(A ∪B)c = Ac ∩Bc. � (11.6)

Exercise 5 (Law of total probability) KK. Suppose A1, A2, . . . , AN ∈ F are mutually

disjoint events such that
⋃N
i=1Ai = Ω. Then, for every B ∈ F

P[B] =
N∑
i=1

P[B ∩ Ai]. � (11.7)

Exercise 6 (Nested sequences of sets) KK.
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1. Let (Ai)i∈IN be an nondecreasing sequence of events, i.e., A1 ⊆ A2 ⊆ A3 ⊆ . . .. Show

that

P

[
∞⋃
i=1

Ai

]
= lim

i→∞
P[Ai] (11.8)

Hint: use the third axiom in the definition of probability and try to write the above

union as a union of disjoint sets.

2. Let (Ai)i∈IN be an nonincreasing sequence of events, i.e., A1 ⊇ A2 ⊇ A3 ⊇ . . .. Show

that

P

[
∞⋂
i=1

Ai

]
= lim

i→∞
P[Ai] (11.9)

Hint: use the result of the previous question. �

11.1.3 Random variables

Suppose you place a bet — if you roll a you win £10, if you roll you lose £100 —

otherwise, you don’t win anything. Your winnings are:

X(ω) =


£10, if ω =

−£100, if ω =

£0, otherwise

(11.10)

Function X : Ω → IR is a (real-valued) random variable. Note that ω is decided by nature

or, in general, by a mechanism that is unknown to us.

Definition 11.4 (Random variable) Given a probability space (Ω,F ,P) and a mea-

surable space (E, E) (sample space + σ-algebra), a random variable X is a function

X : Ω→ E such that X−1(B) ∈ F , for all B ∈ E .

In other words, a random variable is a function that inverts sets of E to sets of F ; the reason

for this requirement will become evident in a while.
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Typically, E can be (i) a discrete space, (ii) the set of real numbers, IR, or (iii) the set of

real vectors. For example, in the case of the variable in Equation (11.10) we have E =

{−100, 0, 10}.

Suppose you place a bet and your winnings are

X(ω) =

£1, if ω ∈ { , , }

£2, if ω ∈ { , , }
(11.11)

What is the probability of your winnings being £2? It is

P[X = £2] = P[{ω ∈ Ω : X(ω) = £2}]
= P[{ , , }] = 1/2.

In general, define the probability distribution of X as the function FX : E → [0, 1] given by

FX(B) = P[X ∈ B] = P[{ω ∈ Ω : X(ω) ∈ B}] = P[X−1(B)]. (11.12)

Note that since X is a random variable, X−1(B) ∈ F , so P[X−1(B)] is well defined.

11.1.4 Expectation

Suppose you place a bet: if you roll a you win £10, if you roll you lose £100 — otherwise,

you win £5 . Your winnings are:

X(ω) =


£10, if ω =

−£100, if ω =

£5, otherwise

(11.13)

The possible values of X are X(Ω) = {10,−100, 5}. Your expected winnings are defined as

IE[X] =
∑
ω∈Ω

X(ω)P[{ω}]

= (−100)1
6

+ 51
6

+ 51
6

+ 51
6

+ 51
6

+ 101
6
≈ − £11.67, (11.14)

and IE[X] is the expectation of X. Note that this definition can only be applied when Ω is

discrete (finite or countably infinite).
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Let us see what to expect when the space is countably infinite: Suppose Ω = IN and let

X : Ω→ IR be a random variable. Then, analogously

IE[X] =
∑
ω∈Ω

X(ω)P[{ω}]. (11.15)

Example (Expectation of Poisson distribution). Suppose that for k ∈ IN

P[{k}] =
λke−λ

k!
, (11.16)

where λ > 0 is a constant. Suppose X(k) = k; then

IE[X] =
∑
k∈IN

X(k)P[{k}] =
∑
k∈IN

k
λke−λ

k!
= . . . = λ. • (11.17)

Let us give the definition of the expectation of a discrete random variable.

Definition 11.5 (Expectation of discrete random variable) Let X : (Ω,F ,P) →
E be a discrete random variable and E ⊆ IRn. The expectation of X is defined as

IE[X] =
∑
ω∈Ω

X(ω)P[{ω}]. (11.18)

Exercise 7 (K). We flip a coin twice. If we get the same outcome (e.g., two heads or two

tails), we earn £1. If we get opposite outcomes (i.e., a head and a tail), we lose 50p. Model

this experiment by introducing a probability space and a random variable. Determine the

expected earnings. �
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11.2 Density or Real-Valued Random Variables

We start by giving the definition of two important constructs that allow us to study real-

valued random variables: the cumulative distribution function (cdf) and the probability

density function (pdf). Later we will generalise these definitions to vector-valued random

variables.

Definition 11.6 (CDF and PDF of real-valued random variables) Let X be a

real-valued random variable. The cumulative distribution function (cdf) of X is a func-

tion FX : IR→ [0, 1] defined as

FX(x) = P[X ≤ x]. (11.19)

A function pX : IR→ [0,∞) is called the probability density function (pdf) of X if

P[a ≤ X ≤ b] =

∫ b

a

pX(x)dx. (11.20)

If X has a pdf2, it is called a continuous random variable. Using the pdf of X we can

determine the probability that X ∈ A, where A ⊆ IR, as follows

P[X ∈ A] =

∫
A

pX(x)dx. (11.21)

By definition of the cdf — see Equation (11.19) — is given by

FX(x) =

∫ x

−∞
pX(ξ)dξ. (11.22)

By the fundamental theorem of calculus (FTC), if pX is continuous at x, then

pX(x) = F ′X(x). (11.23)

Note that

P[a ≤ X ≤ b] = FX(b)− FX(a). (11.24)

A cdf, FX , is well defined if

2All real-valued random variables have a cdf, but not all have a pdf
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• FX is right-continuous

• FX is non-decreasing (if x1 ≤ x2, then FX(x1) ≤ FX(x2))

• limx→−∞ FX(x) = 0

• limx→∞ FX(x) = 1

A pdf, pX , of a real-valued random variable, X, is well defined if

• pX(x) ≥ 0 for all x ∈ IR

•
∫∞
−∞ pX(ξ)dξ = 1

Let us give a couple of examples of continuous random variables.

Example (Normal distribution). If a real-valued random variable X has the following

pdf

pX(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, (11.25)

with µ ∈ IR, σ > 0, we say that X follows the normal distribution N (µ, σ2) and we denote

this by X ∼ N (µ, σ2). •

Example (Uniform distribution). If X has the following pdf

pX(x) =

 1
b−a , for a ≤ x ≤ b

0, otherwise
(11.26)

where a < b, we say that X follows the uniform distribution U(a, b). •

11.2.1 Notable properties of pdfs

Some notable properties of a probability density function:

1. By definition

P[a ≤ X ≤ b] =

∫ b

a

pX(x)dx (11.27)
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2. By taking a = b3

P[X = a] = 0 (11.28)

3. Since P[−∞ < X <∞] = 1, it is∫ ∞
−∞

pX(x)dx = 1. (11.29)

4. We have defined FX(x) = P[X ≤ x], so

FX(x) =

∫ x

−∞
pX(x)dx (11.30)

5. If pX is continuous at x, then

F ′X(x) = pX(x) (11.31)

Exercise 8 (PDF of Uniform Distribution) K. Show that the pdf of U([a, b]), with

a < b, is well defined in the sense that (i) pX(x) ≥ 0, (ii)
∫∞
−∞ pX(x)dx = 1. �

Exercise 9 (PDF of Uniform Distribution) KK. Similarly, show that the exponential

distribution with parameter λ > 0, which is given by

pX(x) =

0, for x < 0

λe−λx, for x ≥ 0
(11.32)

is well defined. �

Exercise 10 (PDF of Pareto Distribution) KK. The Pareto distribution with scale

parameter α > 0 and shape parameter x0 > 0, has the pdf

pX(x) =

0, for x < x0

λ
αxα0
xα+1 , for x ≥ x0

(11.33)

Show that this pdf is well defined. �

Exercise 11 (PDF of Normal Distribution) KKK. The pdf of the normal distribution,

N (µ, σ2), with σ2 > 0 is given in Equation (11.25). Show that this pdf is well defined. �
3Note that this propery holds for continuous random variables, but as we saw earlier this is not necessarily

the case for discrete random variables.
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Exercise 12 (Weibull distribution) KK. The Weibull distribution is widely used in reli-

ability engineering to study the failure rate of equipment. The pdf of a Weibull distribution

with scale parameter λ > 0 and shape parameter k > 0 is given by

pX(x) =

0, for x < 0

k
λ

(
x
λ

)k−1
exp

[
−
(
x
λ

)k]
, for x ≥ 0

(11.34)

Show that the cdf is

FX(x) =

0, for x < 0

1− exp
[
−
(
x
λ

)k]
, for x ≥ 0

� (11.35)

The expectation of a continuous real-valued random variable X can be determined using the

pdf of the random variable. Let us give the following definition4

Definition 11.7 (Expectation of continuous random variable) Let X be a con-

tinuous real-valued random variable with pdf pX . The expectation of X is given by

IE[X] =

∫ ∞
−∞

xpX(x)dx, (11.36)

provided that the integral converges.

Example (Uniform distribution). If X ∼ U(a, b), then

IE[X] =

∫ ∞
−∞

xpX(x)dx =

∫ b

a

x 1
b−adx = a+b

2
. • (11.37)

Example (Normal distribution). If X ∼ N (µ, σ2), then5

IE[X] =

∫ ∞
−∞

x 1
σ
√

2π
e−

1
2(x−µσ )

2

dx = . . . = µ. •

4Strictly speaking, this is not a definition. Note that we have defined the expectation of discrete and

continuous random variables, but not the expectation of a general random variable. This is a deliberate

choice for two reasons: (i) we will only be working with discrete and continuous random variables, (ii) the

definition in the more general case requires a lengthy introduction.
5Hint:

∫∞
−∞ e−x

2

dx =
√
π.
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Exercise 13 (Exponential distribution) KK. Suppose X follows the exponential distri-

bution with parameter λ > 0, i.e., pX(x) = λe−λx for x ≥ 0 and pX(x) = 0 for x < 0. Show

that IE[X] = 1/λ. �

Some notable properties of the expectation are:

1. If X is a discerete random variable on a space Ω = {1, . . . , n}, by definition

IE[X] =
n∑
i=1

piXi, (11.38)

where pi = P[{i}] and Xi = X(ωi)

2. If X is continuous

IE[X] =

∫ ∞
−∞

xpX(x)dx. (11.39)

3. IE is linear: for random variables X, Y for which IE[X] and IE[Y ] exist and are finite,

and a, b ∈ IR

IE[aX + bY ] = aIE[X] + bIE[Y ]. (11.40)

4. If P[X < 0] = 0, then IE[X] ≥ 0. If P[X < 0] = 0 we say that X ≥ 0 almost surely.

5. (Law of the Unconscious Statistician — for short, LotUS 6) If X is a continuous RV

with pdf pX and g : IR→ IR,

IE[g(X)] =

∫ ∞
−∞

g(x)pX(x)dx. (11.41)

11.2.2 Variance

The variance of a real-valued (discrete or continuous) random variance is a measure of its

dispersion/spread. Let us start by stating the definition.

6This result is known as the law of the unconscious statistician because often people (statisticians, al-

legedly) tend to treat it as an axiomatically correct without realising that it is actually a theorem
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Definition 11.8 (Variance) The variance of a real-valued (discrete or continuous) ran-

dom variable is defined as

Var[X] = IE[(X − IE[X])2]. (11.42)

Equivalently,

Var[X] = IE[(X − IE[X])2]

= IE[X2 − 2XIE[X] + IE[X]2]

= IE[X2]− 2IE[X]2 + IE[X]2

= IE[X2]− IE[X]2. (11.43)

If X is a discrete random variable on a space Ω = {1, . . . , n}, with expectation µ = IE[X],

then

Var[X] =
n∑
i=1

pi(Xi − µ)2 =
n∑
i=1

piX
2
i − µ2. (11.44)

Example (Variance of Discrete Random Variable). Let X be the outcome of a fair

die roll, i.e., Ω = {1, . . . , 6}, X(ω) = ω and denote Xi = i, pi = 1
6
. Then,

IE[X] =
6∑
i=1

piXi =
6∑
i=1

i · 1
6

= 3.5, (11.45)

and

Var[X] =
n∑
i=1

piX
2
i − µ2 = 2.9167. • (11.46)

Example (Variance of Uniform Distribution). Let X ∼ U(a, b). We know that IE[X] =
b−a

2
; then,

Var[X] = IE[(X − IE[X])2]
LotUS

=

∫ ∞
−∞

(x− IE[X])2 pX(x)dx

=

∫ b

a

(
x− a+b

2

)2 1
b−adx

= 1
b−a

∫ b

a

(
x− a+b

2

)2
dx = . . . = 1

12
(b− a)2, (11.47)
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where in the second equation we used LotUS. •

Example (Variance of Normal Distribution). Let X ∼ N (µ, σ2). Then,

Var[X] = IE[(X − µ)2] =

∫ ∞
−∞

(x− µ)2pX(x)dx

= 1
σ
√

2π

∫ ∞
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx = . . . = σ2. • (11.48)

Exercise 14 (Variance of Normal Distribution) KKK. Work out the integral in Equa-

tion (11.48). Hints: (i) Write pX as follows

pX(x) = 1
σ
√

2π
e
−
(
x−µ√

2σ

)2

, (11.49)

(ii) Use the change of variables u = x−µ√
2σ

, (iii) Apply integration by parts, (iv) Use the fact

that
∫∞
−∞ e

−u2du =
√
π. �

Some properties of the variance:

1. The variance is nonnegative

2. For every c ∈ IR, Var[X + c] = Var[X]

3. For every a ∈ IR, Var[aX] = a2 Var[X]

Exercise 15 (Proof) K. Prove the above properties. �

Exercise 16 (Variance of scaled random variable) K. Let X be a real-valued random

variable and a ∈ IR. Then Var[aX] = a2 Var[X]. �

11.3 Multivariate Random Variables

Let (Ω,F ,P) be a probability space. A multivariate random variables is a function X :

(Ω,F ,P)→ IRn, i.e.,

X(ω) =
[
X1(ω) . . . Xn(ω)

]ᵀ
. (11.50)

The expectation of X is defined as

IE[X] =
[
IE[X1] . . . IE[Xn]

]ᵀ
. (11.51)
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We will now generalise the definitions of cdf and pdf functions to multivariate random vari-

ables.

Definition 11.9 (cdf and pdf of multivariate random variable) The cumulative

distribution function (cdf) of a multivariate random variable, X : (Ω,F ,P) → IRn, is a

function FX : IRn → [0, 1] defined by

FX(x1, x2, . . . , xn) = P[X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn]. (11.52)

We say that a function pX : IRn → IR is the probability density function of X if

P[X ∈ A] =

∫
A

pX(x)dx. (11.53)

In Section 11.2.2 we defined the variance of real-valued random variables; the variance is a

nonnegative scalar that quantifies that spread of the random variable. When dealing with

vector-valued random variables, the counterpart of the variance is the variance covariance

matrix, which is a symmetric positive semidefinite matrix. Let us give the definition.

Definition 11.10 (Variance-covariance martrix) The variance-covariance matrix

of an IRn-valued random variable X is defined as

Var[X] = IE[(X − IE[X])(X − IE[X])ᵀ]. (11.54)

Note that in Equation (11.54), X−IE[X] is an IRn-valued random variable, so (X−IE[X])(X−
IE[X])ᵀ is an n × n matrix and Var[X] is defined as the expectation of a matrix. The

expectation of a matrix is defined as the expectation of its elements; this is in line with

Equation (11.51).

Exercise 17 (Variance-covariance martrix) K. Show that the variance-covariance ma-

trix of an IRn-valued random variable X is given by

Var[X] = IE[XXᵀ]− IE[X]IE[X]ᵀ. � (11.55)
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Definition 11.11 (Cross-covariance martrix) Given two n-dimensional random

variables X, Y , their cross-covariance matrix (aka covariance matrix) is

Cov[X, Y ] = IE[(X − IE[X])(Y − IE[Y ])ᵀ]. (11.56)

Exercise 18 (Cross-covariance martrix) K. Show that the cross-covariance matrix of

two IRn-valued random variables X and Y is given by

Cov[X, Y ] = IE[XY ᵀ]− IE[X]IE[Y ]ᵀ. � (11.57)

Example (Multivariate case: probability, expectation and marginal pdf). Let

X, Y be two real-valued continuous random variables and Z = (X, Y ). Let

A =
{

[ xy ] ∈ IR2 : a ≤ x ≤ b, c ≤ y ≤ d
}
. (11.58)

Then

P[Z ∈ A] =

∫
A

pZ(z)dz =

∫ d

c

∫ b

a

pX,Y (x, y)dxdy. (11.59)

The expectation of Z is

IE[Z] =

∫
IR2

zpZ(z)dz =

∫ ∞
−∞

∫ ∞
−∞

[ xy ] pZ(x, y)dxdy. (11.60)

The expectation of X is

IE[X] =

∫ ∞
−∞

xpX(x)dx, (11.61)

where pX(x) is the marginal pdf of X, which is

pX(x) =

∫ ∞
−∞

pZ(x, y)dy. • (11.62)

Example (Marginal pdf). Consider an IR2-valued continuous random variable X =

(X1, X2) with

pX(x) =

3x1 + 1, for x1, x2 ≥ 0, and x1 + x2 ≤ 1

0, otherwise
(11.63)
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The reader can verify that pX is well defined. We will determine the marginal pdf pX1(x1).

Using the definition of the marginal pdf in Equation (11.62) we have

pX1(x1) =

∫ +∞

−∞
pX(x1, x2)dx2 =

∫ 1−x1

0

(3x1 + 1)dx2 = (3x1 + 1)(1− x1), (11.64)

defined for x1 ∈ [0, 1], and p(x1) = 0 for x /∈ [0, 1]. •

Expectation of multivariate random variables: IE is linear: for random variables X, Y

for which IE[X] and IE[Y ] exist and are finite, and a, b ∈ IR

IE[aX + bY ] = aIE[X] + bIE[Y ]. (11.65)

Exercise 19 (Expectation of linear transformation) K. Use the linearity property of

IE (Equation (11.65)) to show that for a matrix A ∈ IRm×n,

IE[AX] = AIE[X]. � (11.66)

Exercise 20 (Variance of linear transformation) K. Show that

Var[AX] = AVar[X]Aᵀ. � (11.67)

Exercise 21 (Optimality of expectation) KKK.: (i) Given an n-dimensional RV X,

define the function f : IRn → IR

f(z) = IE[‖X − z‖2]. (11.68)

Then f(z) ≥ f(IE[X]) for all z ∈ IRn. In other words, IE[X] ∈ arg minz f(z).

(ii) Define the function F : IRn → Sn++

F (z) = IE[(X − z)(X − z)ᵀ]. (11.69)

Then F (z) < F (IE[X]) for all z ∈ IRn. We can say that, in a way, IE[X] “minimises” F .

(iii) Use (ii) to prove (i); hint: use the property trace IE[X] = IE[trace(X)]. �

11.3.1 Multivariate normal distribution

Suppose that Z1, . . . , Zm ∼ N (0, 1) and A ∈ IRn×m, µ ∈ IRn. Let

X = AZ + µ. (11.70)
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We say that X follows the multivariate normal distribution N (µ,Σ), where Σ = AAᵀ.

The expectation of X is µ and its variance-covariance matrix is Var[X] = Σ.

If Σ is positive definite, then the pdf of N (µ,Σ) is

pX(x) =
1

(2π)n/2|Σ|n/2
e−

1
2

(x−µ)ᵀΣ−1(x−µ). (11.71)

Marginals: Suppose Z = (X, Y ) ∼ N (µ,Σ) with µ = (µX , µY ) and

Σ =

[
ΣXX ΣXY

ΣY X ΣY Y

]
, (11.72)

then

X ∼ N (µX ,ΣXX). (11.73)

0

2

4
0

2

4
0

0.5
pY (y)

pX(x)

x y

p X
,Y

Affine transformations: We can easily show that for any matrix A ∈ IRm×n, vector

b ∈ IRn, and n-dimensional random variable X, we have

IE[AX + b] = AIE[X] + b. (11.74)

Therefore, if X ∼ N (µ,Σ),

IE[AX + b] = Aµ+ b, (11.75)
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and

Var[AX + b] = IE[(AX − Aµ)(AX − Aµ)ᵀ] = AVar[X]Aᵀ = AΣAᵀ. (11.76)

Moreover, we can show that

AX + b ∼ N (Aµ+ b, AΣAᵀ). (11.77)
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11.4 Understanding conditioning on discrete spaces

11.4.1 Conditional probability

Here are some examples of the concept of conditional probability or probability conditioned

by an event

• What is the probability that a person develops prostate cancer given that they are

male and smoke? This is denoted by P[Cancer | Male, Smoker]

• What is the probability that a student scores > 90% in the exam given that they study

for 1 hr every day? This is denoted by P[Score > 90% | Study 1 hour every day]

• What is the probability that a person has COVID-19 given that they have fever? This

is denoted by P[COVID19 | Fever]

• What is the probability that a person has fever given that they have COVID-19? This

is denoted by P[Fever | COVID19]

This leads to the introduction of the concept of the conditional probability. Let us give the

definition.

Definition 11.12 (Conditional probability) Let (Ω,F ,P) be a probability space and

A,B ∈ F and P[B] > 0. We define

P[A | B] =
P[A ∩B]

P[B]
. (11.78)

This is called the conditional probability of A given B.

If P[A | B] = P[A], we say that A and B are independent. If A and B are independent, then

P[A ∩B] = P[A]P[B]. We will revisit the concept of independence in Section 11.5.3.
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Fever: 5% COVID19: 3%

COVID19 ∩ Fever: 1.5%

P[Fever | COVID19] =
P[Fever ∩ COVID19]

P[COVID19]

=
0.015

0.03
= 50%

P[COVID19 | Fever] =
P[Fever ∩ COVID19]

P[Fever]

=
0.015

0.05
= 30%

Example (Conditioning of die rolls). We roll a fair die and we play a game where our

winnings are

X(ω) =

£0, if ω ∈ { , , }

£1, if ω ∈ { , , }
(11.79)

If we know that we have won £1, then the probability they rolled is zero, P[{ , , } |
X = £1] = 0, and P[{ , , } | X = £1] = 1. What is the probability P[A | X = £1] for

some event A? •

This gives rise to the probability of an event conditional on the outcome of a discrete random

variable. Let us give the definition.

Definition 11.13 (Conditioning by discrete random variable) x Let (Ω,F ,P) be

a discrete probability space and X is a (discrete) random variable. For A ∈ F we define

P[A | X = x] = P[A | B(x)], (11.80)

where B(x) = {ω ∈ Ω : X(ω) = x}, provided that P[B(x)] > 0.

We will discuss the case of conditioning by a continuous random variable in Section 11.5.

In this section we will be dealing with discrete random variables only. Keep in mind that

Definition 11.13 does not hold for continuous random variables; the reason is that if X is

continuous, P[X = x] = P[B(x)] = 0. Let us give an example.
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Example (Conditional probability of discrete random variable). Consider again the

previous example where

X(ω) =

£0, if ω ∈ { , , }

£1, if ω ∈ { , , }
(11.81)

Then,

P[{ , } | X = £1] = P[{ , } | {ω ∈ Ω : X(ω) = 1}]
= P[{ , } | { , , }]

=
P[{ , } ∩ { , , }]

P[{ , , }]

=
P[{ }]

P[{ , , }]
=

1/6

1/2
= 1

3
. • (11.82)

11.4.2 Conditional Expectation

Before we give the formal definition of conditional expectation let us give a few motivating

examples to understand it conceptually.

Let X be the temperature in Belfast. Then7, IE[X] = 13.2◦. But if we know that it’s July,

then IE[X | July] = 19.3◦.

Let X be the height of a 19 y/o person. Then IE[X] = 1.71 m. If we know that this person

is from the Netherlands, then IE[X | Netherlands] = 1.77 m. If, additionally, the person is

male IE[X | Netherlands,Male] = 1.83 m.

The expectation can be conditional on an event: Let Ω = {1, 2, . . . , n}, F = 2Ω and let

P be a probability. Let X be a random variable on (Ω,F ,P). Recall that

IE[X] =
n∑
i=1

XiP[{i}], (11.83)

Let A ∈ F with P[A] > 0; then

IE[X | A] =
n∑
i=1

XiP[{i} | A]. (11.84)

7Based on data from the Stormont Castle weather station.
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Recall that

P[{i} | A] =
P[{i} and A]

P[A]
=


P[{i}]
P[A]

, if i ∈ A

0, otherwise
, (11.85)

therefore,

IE[X | A] = 1
P[A]

∑
i∈A

XiP[{i}]. (11.86)

Example (Die roll with insight). Consider a fair die and suppose you win £(−1)nn if

you roll n: If you roll you win −£1. If you roll you win £2. If you roll you win −£3,

etc. Let X be your winnings. This is a random variable on Ω = {1, . . . , 6}. Then

IE[X] =
6∑
i=1

(−1)ii1
6

= £0.5. (11.87)

Consider the event A = { , , } ⊆ Ω, i.e., you roll a die, someone looks at it and informs

you that you rolled either or or . The probability of A is P[A] = 1
2
. Then,

IE[X | A] = 1
P[A]

∑
i∈A

XiP[{i}] =
1
1
2

∑
i∈A

(−1)ii

Xi

1
6

= £4. • (11.88)

Alternative formulation of the conditional expectation on an event: Let Ω =

{1, 2, . . . , n}, F = 2Ω and P be a probability. Let X : (Ω,F ,P) → IR be a random variable

with X(Ω) = {X(1), X(2), . . . , X(m)}, i.e., X has m possible unique values.

Then,

IE[X] =
m∑
i=1

P[X = X(j)]X(j). (11.89)

Let A ∈ F with P[A] > 0; then

IE[X | A] =
m∑
j=1

P[X = X(j) | A]X(j)

=
1

P[A]

m∑
j=1

P[X = X(j) and A]X(j). (11.90)
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The expectation of a random variable can be conditional on another random variable:

The expectation of a random variable X on a discrete probability space can be conditioned

by another random variable Y on that space. We define

IE[X | Y = y] =
n∑
i=1

Xi P[{i} | Y = y]

Conditional on the event

{ω∈Ω:Y (ω)=y}

=
1

P[Y = y]

n∑
i=1

XiP[{i} and Y = y], (11.91)

provided that P[Y = y] > 0.

Important: The conditional expectation, IE[X | Y = y], is a function of the observation

y. However, Y is a random variable; this gives rise to IE[X | Y = Y (ω)] which is a random

variable — this is denoted as IE[X | Y ].

Moreover, IE[X | Y = y] is the expectation of X conditioned on the event A(y) = {ω ∈ Ω :

Y (ω) = y} (Caveat: this is true ONLY on discrete spaces).
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11.5 Conditioning of continuous random variables

11.5.1 Conditioning on event

Definition 11.14 (Conditional expectation of random variable) Let X be a real-

valued continuous random variable on (Ω,F ,P) and B ∈ F with P[B] > 0. We define

IE[X | B] =
IE[X1B]

P[B]
, (11.92)

where 1B is the following random variable

1B(ω) =

1, if ω ∈ B

0, otherwise
(11.93)

provided that the expectation in Equation (11.92) exists.

Definition 11.15 (Conditional pdf) Suppose that X is a continuous random variable

with pdf pX and B ∈ F with P[B] > 0. We define the conditional pdf

pX|B(x) =
1B(x)pX(x)

P[B]
. (11.94)

Then it can be seen that we can determine the conditional expectation of X given an event

B using the conditional pX|B as follows

IE[X | B] =

∫ ∞
−∞

xpX|B(x)dx. (11.95)

Given a continuous random variable X : (Ω,F ,P) → (E, E) with pdf pX and an event

B ∈ F , we have that

P[X ∈ A | B] =

∫
A

pX|B(x)dx =

∫
A∩B

pX(x)

P[B]
dx =

P[X ∈ (A ∩B)]

P[B]
. (11.96)
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A somewhat common mistake that some people do is the following: suppose we have a real-

valued random variable X with pdf pX and we need to determine E[X | X > c]. Then it is

wrong to write

IE[X | X > c] =

∫ ∞
c

pX(x)dx. (11.97)

Instead, we need to invoke Equation (11.95). You should solve the following exercise.

Exercise 22 (Conditional expectation of normal distribution) KK. Suppose that

X ∼ N (0, 1). Determine IE[X | X > 2], that is, determine the expectation of X if we know

that X > 2. Hint: Use Equation (11.95). �

11.5.2 Conditioning on random variable

Let X and Y be two real-valued (or vector-valued) continuous random variables on (Ω,F ,P),

with joint pdf pX,Y (x, y). Let us define the conditional expectation of X conditional on the

fact that Y = y.

Definition 11.16 (Conditional pdf and conditional expectation) The condi-

tional pdf of X given that Y = y is defined as

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
, (11.98)

provided that pY (y) > 0. The conditional expectation of X given Y = y is

IE[X | Y = y] =

∫ ∞
−∞

xpX|Y (x | y)dx. (11.99)

We can define the conditional variance of X given Y = y as

Var[X | Y = y] = IE[(X − IE[X | Y = y])2 | Y = y]. (11.100)

Note again that IE[X | Y ] is a random variable — and not a fixed value — and in particular

it is IE[X | Y = Y (ω)].
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11.5.3 Independence of events and random variables

Recall that A,B ∈ F are said to be independent if

P[A ∩B] = P[A]P[B]. (11.101)

We say that two random variables, X, Y , are independent if

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]. (11.102)

Equivalently, two multivariate random variables X and Y with cdfs FX and FY are indepen-

dent if and only if

FX,Y (x, y) = FX(x)FY (y). (11.103)

If additionally (X, Y ) is continuous with pdf pX,Y then X and Y are independent if and only

if

pX,Y (x, y) = pX(x)pY (y). (11.104)

or, what is the same,

pX|Y (x | y) = pX(x), and pY |X(y | x) = pY (y). (11.105)

Additionally, for two independent real-valued random variables X and Y we can show that

IE[XY ] = IE[X] · IE[Y ]. (11.106)

In general this is not true if X and Y are not independent. One important consequence of

the independence of two random variables, X and Y , is that

Var[X + Y ] = Var[X] + Var[Y ]. (11.107)

11.5.4 Properties

Some notable properties of the conditional expectation:

• IE[X | Y ] is linear: for all a, b ∈ IR and RVs X1, X2, Y :

IE[aX1 + bX2 | Y ] = aIE[X1 | Y ] + bIE[X2 | Y ]. (11.108)
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• Law of total expectation

IE[IE[X | Y ]] = IE[X]. (11.109)

• For random variables X and Y and a function g

IE[g(Y )X | Y ] = g(Y )IE[X | Y ]. (11.110)

• If X and Y are independent,

IE[X | Y ] = IE[X]. (11.111)

• The conditional variance is given by

Var[X | Y ] = IE[X2 | Y ]− IE[X | Y ]2. (11.112)

• Conditional LotUS: for a real-valued random variable X:

IE[g(X) | Y = y] =

∫ ∞
−∞

g(x)pX|Y (x | y)dx. (11.113)

• For two random variables X, Y (not necessarily independent), and a function g

IE[g(X, Y ) | Y = y] = IE[g(X, y) | Y = y]. (11.114)

• Law of total expectation (again). For random variables X and Y and a function g,

IE
[
IE[g(X, Y ) | Y ]

]
= IE[g(X, Y )]. (11.115)

The law of total expectation is particularly useful and allows us to determine the expectation

of a random variable X in cases where it is easier to determine the conditional expectation

of X given a random variable Y . Let us give an example.

Example (Expectation of sum of random length). Suppose that the expected amount

of money a customer spends at a store is £10. Every day, the expected number of customers

is 50. What is the expected income of the store?

Let Xi be the amount of money that the i-th client will spend and i = 1, . . . , N . Note that

all Xi for i = 1, . . . , N and N are random variables. The total amount of money that the

store earns is Y = X1 + . . .+XN .
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Assume that N is known. Then, IE[Y | N ] = IE[X1 + . . . + XN | N ] = 10N . Now using the

law of total expectation we have IE[Y ] = IE[IE[Y | N ]] = IE[10N ] = £500. •

Exercise (Law of total variance) KK. Similar to the law of total expectation, we have

the law of total variance which states that for a real-valued random variable and a random

variable Y we have

Var[X] = IE[Var[X | Y ]] + Var[IE[X | Y ]]. (11.116)

To prove this follow these steps:

1. Apply the expectation to both sides of Equation (11.112)

2. apply the law of total expectation to the term IE[IE[X2 | Y ]] that appears in Step 1

3. Use Definition 11.8 to determine the variance of IE[X | Y ] and

4. apply the law of total expectation to the term IE[IE[X | Y ]] that appears in Step 3

Lastly, combine the above equations to arrive at Equation (11.116). �

Example (Application of the law of total variance). Following up on the above

example, suppose that now we have IE[Xi] = 10, Var[Xi] = £2100 and IE[N ] = 50, Var[N ] =

20. Let us determine the variance of Y = X1 + . . .+XN . By the law of total variance given

in Equation (11.116) we have that

Var[Y ] = IE[Var[Y | N ]] + Var[IE[Y | N ]

10N

]. (11.117)

We now need to determine IE[Var[Y | N ]]. We have that Var[Y | N ] is given by

Var[Y | N ] = Var[X1 + . . .+XN | N ] (11.118)

Under the assumption that X1, . . . , XN are mutually independent we have

= Var[X1 | N ] + Var[X2 | N ] + . . . + Var[XN | N ] (11.119)

and assuming that Xi and N are independent for all i

= 20N, (11.120)
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so from Equation (11.117) we have

Var[Y ] = IE[20N ] + Var[10N ] = 20IE[N ] + 100 Var[N ] = 3000. • (11.121)

Exercise 23 (Optimality of conditional expectation) KKK. (i) Given two vector-

valued n-dimensional jointly distributed random variables X and Y , define the function

f : IRn → IR

f(z; y) = IE[‖X − z‖2 | Y = y], (11.122)

where z = z(y) is any estimate of X given Y = y (not necessarily the conditional expec-

tation). Then f(z) ≥ f(IE[X | Y = y]) for all z ∈ IRn. In other words, IE[X | Y =

y] ∈ arg minz f(z; y). (ii) State and prove the counterpart of Exercise 21 for the conditional

expectation. �

11.5.5 Conditioning of multivariate normals

Theorem 11.17 (Conditioning of multivariate normal)! Let X ∼ N (µ,Σ) be an

n-dimensional random vector. Let us partition X into two random vectors X1 and X2

as follows

X =
[
X1
X2

]
, (11.123)

with X1 ∈ IRn1, X2 ∈ IRn2 with n = n1 + n2. Let

µ = [ µ1µ2 ] , and Σ =
[

Σ11 Σ12
Σ21 Σ22

]
, (11.124)

and assume that Σ22 ∈ Sn2
++. Then, the conditional distribution of X1 given that X2 = x2

is normal with mean

IE[X1 | X2 = x2] = µ1 + Σ12Σ−1
22 (x2 − µ2), (11.125)

and

Var[X1 | X2 = x2] = Σ11 − Σ12Σ−1
22 Σ21. (11.126)
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Proof. The proof hinges on Schur’s complement. We define the Schur complement of Σ (with

respect to Σ22) to be the following nonsingular matrix

Σ∗ = Σ11 − Σ12Σ−1
22 Σ21. (11.127)

Then, the inverse of Σ is the matrix

Σ−1 =

[
Σ∗11 Σ∗12

Σ∗21 Σ∗22

]
, (11.128)

where Σ∗11 = Σ−1
∗ , Σ∗12 = −Σ−1

∗ Σ12Σ−1
22 , Σ∗21 = (Σ∗12)ᵀ (since Σ is symmetric) and Σ∗22 =

Σ−1
22 + Σ−1

22 Σ21Σ−1
∗ Σ12Σ−1

22 . We need to determine the pdf of X1 conditional on X2; by Equa-

tion (11.98) we have that pX1|X2(x1 | x2) is proportional to pX1,X2(x1, x2); note that the

denominator of Equation (11.98) is pX2(x2), which independent of x1. We denote this as

pX1|X2(x1 | x2) ∝ pX1,X2(x1, x2). (11.129)

Since (X1, X2) are jointly normal, we have that its pdf is (see Equation (11.71))

pX1,X2(x1, x2) ∝ exp
(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
, (11.130)

where x = (x1, x2) and µ = (µ1, µ2). The reader can use the block-inversion formula in

Equation (11.128) to verify that we can write

(x− µ)ᵀΣ−1(x− µ) = (x1 − µ∗)ᵀΣ−1
∗ (x1 − µ∗) + (x2 − µ2)ᵀΣ−1

22 (x2 − µ2), (11.131)

where µ∗ = µ1 + Σ12Σ−1
22 (x2 − µ2). From Equations (11.129) and (11.130) we conclude that

pX1|X2(x1 | x2) ∝ exp
(
−1

2
(x1 − µ∗)ᵀΣ−1

∗ (x1 − µ∗)
)
, (11.132)

which proves that X1 | X2 is normal with mean µ∗ and variance Σ∗. �

Remark. By Equation (11.126), we have

Var[X1 | X2 = x2] = Σ11 − Σ12Σ−1
22 Σ21. (11.133)

Since Σ22 � 0, Σ12Σ−1
22 Σ21 < 0, therefore Σ11 − Σ12Σ−1

22 Σ21 4 Σ11, i.e.,

Var[X1 | X2 = x2] 4 Var[X1]. (11.134)

In other words, additional information does not “increase” (in the sense of 4) the uncer-

tainty!
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Example (Conditioning of normally distributed random variables). Suppose that

Z = (Z1, Z2, Z3, Z4) is a four-dimensional random variable that follow the normal distribu-

tion, Z ∼ N (µ,Σ) with µ = (1, 2, 3, 4) and

Σ =


1.0 0.35 0.32 0.39

0.35 0.84 0.3 0.26

0.32 0.3 0.77 0.23

0.39 0.26 0.23 0.83

 . (11.135)

The reader can verify that Σ ∈ S4
++. Suppose we measure Z3 and Z4 and we want to determine

IE[Z1, Z2 | Z3, Z4]. We will apply Theorem 11.17 with X1 = (Z1, Z2) and X2 = (Z3, Z4). We

have

Σ11 =

[
1.0 0.35

0.35 0.84

]
,Σ12 =

[
0.32 0.39

0.3 0.26

]
,Σ22 =

[
0.77 0.23

0.23 0.83

]
. (11.136)

and µ1 = (1, 2), µ2 = (3, 4). By Theorem 11.17

IE

[
Z1, Z2

∣∣∣∣∣ Z3 = z3

Z4 = z4

]
=

[
1

2

]
+

[
0.32 0.39

0.3 0.26

][
0.77 0.23

0.23 0.83

]−1([
z3

z4

]
−

[
3

4

])
, (11.137)

and

Var

[
Z1, Z2

∣∣∣∣∣ Z3 = z3

Z4 = z4

]
=

[
1

2

]
+

[
0.32 0.39

0.3 0.26

][
0.77 0.23

0.23 0.83

]−1 [
0.32 0.3

0.39 0.26

]
. • (11.138)

Exercise 24 (Conditioning of normals) K.! Let Z be as in the example above and we

measure Z2 = 2.5, Z3 = 2.8, and Z4 = 4.1. Determine the conditional expectation of Z1

given these measurements. �

Exercise 25 (Conditioning of normals) KK.! Let Z be as in the example above and we

measure Z2 = 2.5, and Z4 = 4.1. Determine the conditional expectation and the conditional

variance of (Z1, Z3) given these measurements. �
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